Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 1,329 papers shown
Title
Security Matters: A Survey on Adversarial Machine Learning
Guofu Li
Pengjia Zhu
Jin Li
Zhemin Yang
Ning Cao
Zhiyi Chen
AAML
23
24
0
16 Oct 2018
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Bo-wen Li
Feng Yu
M. Liu
D. Song
AAML
16
99
0
11 Oct 2018
Is PGD-Adversarial Training Necessary? Alternative Training via a Soft-Quantization Network with Noisy-Natural Samples Only
T. Zheng
Changyou Chen
K. Ren
AAML
18
6
0
10 Oct 2018
Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
S. Locke
Ian Rackow
Kevin Kulda
Dana Dachman-Soled
Tudor Dumitras
MIACV
25
90
0
08 Oct 2018
Feature Prioritization and Regularization Improve Standard Accuracy and Adversarial Robustness
Chihuang Liu
J. JáJá
AAML
18
12
0
04 Oct 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
27
49
0
02 Oct 2018
Improved robustness to adversarial examples using Lipschitz regularization of the loss
Chris Finlay
Adam M. Oberman
B. Abbasi
24
34
0
01 Oct 2018
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
J. Hopcroft
AAML
OOD
17
131
0
01 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
CAAD 2018: Generating Transferable Adversarial Examples
Yash Sharma
Tien-Dung Le
M. Alzantot
AAML
SILM
18
7
0
29 Sep 2018
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
18
0
0
29 Sep 2018
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
8
673
0
28 Sep 2018
Neural Networks with Structural Resistance to Adversarial Attacks
Luca de Alfaro
AAML
6
5
0
25 Sep 2018
Fast Geometrically-Perturbed Adversarial Faces
Ali Dabouei
Sobhan Soleymani
J. Dawson
Nasser M. Nasrabadi
CVBM
AAML
26
65
0
24 Sep 2018
Low Frequency Adversarial Perturbation
Chuan Guo
Jared S. Frank
Kilian Q. Weinberger
AAML
19
164
0
24 Sep 2018
Adversarial Defense via Data Dependent Activation Function and Total Variation Minimization
Bao Wang
A. Lin
Weizhi Zhu
Penghang Yin
Andrea L. Bertozzi
Stanley J. Osher
AAML
29
21
0
23 Sep 2018
Playing the Game of Universal Adversarial Perturbations
Julien Perolat
Mateusz Malinowski
Bilal Piot
Olivier Pietquin
AAML
11
24
0
20 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
22
21
0
18 Sep 2018
Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks
Siyue Wang
Tianlin Li
Pu Zhao
Wujie Wen
David Kaeli
S. Chin
X. Lin
AAML
16
70
0
13 Sep 2018
Adversarial Examples: Opportunities and Challenges
Jiliang Zhang
Chen Li
AAML
9
233
0
13 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
16
62
0
11 Sep 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Are adversarial examples inevitable?
Ali Shafahi
Yifan Jiang
Christoph Studer
S. Feizi
Tom Goldstein
SILM
11
280
0
06 Sep 2018
Bridging machine learning and cryptography in defence against adversarial attacks
O. Taran
Shideh Rezaeifar
Slava Voloshynovskiy
AAML
13
22
0
05 Sep 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
L. Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
37
40
0
04 Sep 2018
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
14
19
0
31 Aug 2018
Maximal Jacobian-based Saliency Map Attack
R. Wiyatno
Anqi Xu
AAML
6
87
0
23 Aug 2018
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Reinforcement Learning for Autonomous Defence in Software-Defined Networking
Yi Han
Benjamin I. P. Rubinstein
Tamas Abraham
T. Alpcan
O. Vel
S. Erfani
David Hubczenko
C. Leckie
Paul Montague
AAML
14
68
0
17 Aug 2018
Mitigation of Adversarial Attacks through Embedded Feature Selection
Ziyi Bao
Luis Muñoz-González
Emil C. Lupu
AAML
17
1
0
16 Aug 2018
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
13
121
0
16 Aug 2018
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
Hsueh-Ti Derek Liu
Michael Tao
Chun-Liang Li
Derek Nowrouzezahrai
Alec Jacobson
AAML
33
13
0
08 Aug 2018
Adversarial Vision Challenge
Wieland Brendel
Jonas Rauber
Alexey Kurakin
Nicolas Papernot
Behar Veliqi
M. Salathé
Sharada Mohanty
Matthias Bethge
AAML
16
58
0
06 Aug 2018
Defense Against Adversarial Attacks with Saak Transform
Sibo Song
Yueru Chen
Ngai-man Cheung
C.-C. Jay Kuo
20
24
0
06 Aug 2018
Gray-box Adversarial Training
S. VivekB.
Konda Reddy Mopuri
R. Venkatesh Babu
AAML
8
34
0
06 Aug 2018
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Aditya K
Slawomir Grzonkowski
NhienAn Lekhac
11
27
0
03 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Hardware Trojan Attacks on Neural Networks
Joseph Clements
Yingjie Lao
AAML
11
89
0
14 Jun 2018
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
16
97
0
07 Jun 2018
ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
A. Salem
Yang Zhang
Mathias Humbert
Pascal Berrang
Mario Fritz
Michael Backes
MIACV
MIALM
34
926
0
04 Jun 2018
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
Jan Svoboda
Jonathan Masci
Federico Monti
M. Bronstein
Leonidas J. Guibas
AAML
GNN
33
41
0
31 May 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
13
394
0
30 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
26
1,163
0
17 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
23
784
0
30 Apr 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
19
21
0
23 Apr 2018
Decoupled Networks
Weiyang Liu
Ziqiang Liu
Zhiding Yu
Bo Dai
Rongmei Lin
Yisen Wang
James M. Rehg
Le Song
OOD
17
5
0
22 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
14
96
0
20 Apr 2018
Previous
1
2
3
...
25
26
27
Next