ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07204
  4. Cited By
Ensemble Adversarial Training: Attacks and Defenses

Ensemble Adversarial Training: Attacks and Defenses

19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
    AAML
ArXivPDFHTML

Papers citing "Ensemble Adversarial Training: Attacks and Defenses"

50 / 1,329 papers shown
Title
Security Matters: A Survey on Adversarial Machine Learning
Security Matters: A Survey on Adversarial Machine Learning
Guofu Li
Pengjia Zhu
Jin Li
Zhemin Yang
Ning Cao
Zhiyi Chen
AAML
23
24
0
16 Oct 2018
Characterizing Adversarial Examples Based on Spatial Consistency
  Information for Semantic Segmentation
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Bo-wen Li
Feng Yu
M. Liu
D. Song
AAML
16
99
0
11 Oct 2018
Is PGD-Adversarial Training Necessary? Alternative Training via a Soft-Quantization Network with Noisy-Natural Samples Only
T. Zheng
Changyou Chen
K. Ren
AAML
18
6
0
10 Oct 2018
Security Analysis of Deep Neural Networks Operating in the Presence of
  Cache Side-Channel Attacks
Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
S. Locke
Ian Rackow
Kevin Kulda
Dana Dachman-Soled
Tudor Dumitras
MIACV
25
90
0
08 Oct 2018
Feature Prioritization and Regularization Improve Standard Accuracy and
  Adversarial Robustness
Feature Prioritization and Regularization Improve Standard Accuracy and Adversarial Robustness
Chihuang Liu
J. JáJá
AAML
18
12
0
04 Oct 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
27
49
0
02 Oct 2018
Improved robustness to adversarial examples using Lipschitz regularization of the loss
Chris Finlay
Adam M. Oberman
B. Abbasi
24
34
0
01 Oct 2018
Improving the Generalization of Adversarial Training with Domain
  Adaptation
Improving the Generalization of Adversarial Training with Domain Adaptation
Chuanbiao Song
Kun He
Liwei Wang
J. Hopcroft
AAML
OOD
17
131
0
01 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep
  Convolutional Networks
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
CAAD 2018: Generating Transferable Adversarial Examples
CAAD 2018: Generating Transferable Adversarial Examples
Yash Sharma
Tien-Dung Le
M. Alzantot
AAML
SILM
18
7
0
29 Sep 2018
Training Machine Learning Models by Regularizing their Explanations
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
18
0
0
29 Sep 2018
Adversarial Attacks and Defences: A Survey
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
8
673
0
28 Sep 2018
Neural Networks with Structural Resistance to Adversarial Attacks
Neural Networks with Structural Resistance to Adversarial Attacks
Luca de Alfaro
AAML
6
5
0
25 Sep 2018
Fast Geometrically-Perturbed Adversarial Faces
Fast Geometrically-Perturbed Adversarial Faces
Ali Dabouei
Sobhan Soleymani
J. Dawson
Nasser M. Nasrabadi
CVBM
AAML
26
65
0
24 Sep 2018
Low Frequency Adversarial Perturbation
Low Frequency Adversarial Perturbation
Chuan Guo
Jared S. Frank
Kilian Q. Weinberger
AAML
19
164
0
24 Sep 2018
Adversarial Defense via Data Dependent Activation Function and Total
  Variation Minimization
Adversarial Defense via Data Dependent Activation Function and Total Variation Minimization
Bao Wang
A. Lin
Weizhi Zhu
Penghang Yin
Andrea L. Bertozzi
Stanley J. Osher
AAML
29
21
0
23 Sep 2018
Playing the Game of Universal Adversarial Perturbations
Playing the Game of Universal Adversarial Perturbations
Julien Perolat
Mateusz Malinowski
Bilal Piot
Olivier Pietquin
AAML
11
24
0
20 Sep 2018
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural
  Networks against Adversarial Malware Samples
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
22
21
0
18 Sep 2018
Defensive Dropout for Hardening Deep Neural Networks under Adversarial
  Attacks
Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks
Siyue Wang
Tianlin Li
Pu Zhao
Wujie Wen
David Kaeli
S. Chin
X. Lin
AAML
16
70
0
13 Sep 2018
Adversarial Examples: Opportunities and Challenges
Adversarial Examples: Opportunities and Challenges
Jiliang Zhang
Chen Li
AAML
9
233
0
13 Sep 2018
On the Structural Sensitivity of Deep Convolutional Networks to the
  Directions of Fourier Basis Functions
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
16
62
0
11 Sep 2018
Certified Adversarial Robustness with Additive Noise
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
28
341
0
10 Sep 2018
Are adversarial examples inevitable?
Are adversarial examples inevitable?
Ali Shafahi
Yifan Jiang
Christoph Studer
S. Feizi
Tom Goldstein
SILM
11
280
0
06 Sep 2018
Bridging machine learning and cryptography in defence against
  adversarial attacks
Bridging machine learning and cryptography in defence against adversarial attacks
O. Taran
Shideh Rezaeifar
Slava Voloshynovskiy
AAML
13
22
0
05 Sep 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided
  Fuzzing
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
L. Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
37
40
0
04 Sep 2018
MULDEF: Multi-model-based Defense Against Adversarial Examples for
  Neural Networks
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
14
19
0
31 Aug 2018
Maximal Jacobian-based Saliency Map Attack
Maximal Jacobian-based Saliency Map Attack
R. Wiyatno
Anqi Xu
AAML
6
87
0
23 Aug 2018
Are You Tampering With My Data?
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
37
19
0
21 Aug 2018
Controlling Over-generalization and its Effect on Adversarial Examples
  Generation and Detection
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Reinforcement Learning for Autonomous Defence in Software-Defined
  Networking
Reinforcement Learning for Autonomous Defence in Software-Defined Networking
Yi Han
Benjamin I. P. Rubinstein
Tamas Abraham
T. Alpcan
O. Vel
S. Erfani
David Hubczenko
C. Leckie
Paul Montague
AAML
14
68
0
17 Aug 2018
Mitigation of Adversarial Attacks through Embedded Feature Selection
Mitigation of Adversarial Attacks through Embedded Feature Selection
Ziyi Bao
Luis Muñoz-González
Emil C. Lupu
AAML
17
1
0
16 Aug 2018
Distributionally Adversarial Attack
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
13
121
0
16 Aug 2018
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically
  Differentiable Renderer
Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically Differentiable Renderer
Hsueh-Ti Derek Liu
Michael Tao
Chun-Liang Li
Derek Nowrouzezahrai
Alec Jacobson
AAML
33
13
0
08 Aug 2018
Adversarial Vision Challenge
Adversarial Vision Challenge
Wieland Brendel
Jonas Rauber
Alexey Kurakin
Nicolas Papernot
Behar Veliqi
M. Salathé
Sharada Mohanty
Matthias Bethge
AAML
16
58
0
06 Aug 2018
Defense Against Adversarial Attacks with Saak Transform
Defense Against Adversarial Attacks with Saak Transform
Sibo Song
Yueru Chen
Ngai-man Cheung
C.-C. Jay Kuo
20
24
0
06 Aug 2018
Gray-box Adversarial Training
Gray-box Adversarial Training
S. VivekB.
Konda Reddy Mopuri
R. Venkatesh Babu
AAML
8
34
0
06 Aug 2018
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Enabling Trust in Deep Learning Models: A Digital Forensics Case Study
Aditya K
Slawomir Grzonkowski
NhienAn Lekhac
11
27
0
03 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Hardware Trojan Attacks on Neural Networks
Hardware Trojan Attacks on Neural Networks
Joseph Clements
Yingjie Lao
AAML
11
89
0
14 Jun 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
16
97
0
07 Jun 2018
ML-Leaks: Model and Data Independent Membership Inference Attacks and
  Defenses on Machine Learning Models
ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models
A. Salem
Yang Zhang
Mathias Humbert
Pascal Berrang
Mario Fritz
Michael Backes
MIACV
MIALM
34
926
0
04 Jun 2018
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
Jan Svoboda
Jonathan Masci
Federico Monti
M. Bronstein
Leonidas J. Guibas
AAML
GNN
33
41
0
31 May 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for
  Attacking Black-box Neural Networks
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
13
394
0
30 May 2018
Towards the first adversarially robust neural network model on MNIST
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
369
0
23 May 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using
  Generative Models
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
26
1,163
0
17 May 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation
  Testing
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
21
41
0
14 May 2018
Adversarially Robust Generalization Requires More Data
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
23
784
0
30 Apr 2018
VectorDefense: Vectorization as a Defense to Adversarial Examples
VectorDefense: Vectorization as a Defense to Adversarial Examples
V. Kabilan
Brandon L. Morris
Anh Totti Nguyen
AAML
19
21
0
23 Apr 2018
Decoupled Networks
Decoupled Networks
Weiyang Liu
Ziqiang Liu
Zhiding Yu
Bo Dai
Rongmei Lin
Yisen Wang
James M. Rehg
Le Song
OOD
17
5
0
22 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
14
96
0
20 Apr 2018
Previous
123...252627
Next