ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.03757
  4. Cited By
Deep Probabilistic Programming

Deep Probabilistic Programming

13 January 2017
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
    BDL
ArXivPDFHTML

Papers citing "Deep Probabilistic Programming"

50 / 80 papers shown
Title
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
Bowen Li
Zhaoyu Li
Qiwei Du
Jinqi Luo
Wenshan Wang
...
Katia P. Sycara
Pradeep Kumar Ravikumar
Alexander G. Gray
X. Si
Sebastian A. Scherer
AI4CE
LRM
81
3
0
01 Nov 2024
Probabilistic Answer Set Programming with Discrete and Continuous Random
  Variables
Probabilistic Answer Set Programming with Discrete and Continuous Random Variables
Damiano Azzolini
Fabrizio Riguzzi
13
0
0
30 Sep 2024
Probabilistic Programming with Programmable Variational Inference
Probabilistic Programming with Programmable Variational Inference
McCoy R. Becker
Alexander K. Lew
Xiaoyan Wang
Matin Ghavami
Mathieu Huot
Martin Rinard
Vikash K. Mansinghka
45
3
0
22 Jun 2024
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
25
0
0
23 Oct 2023
Scalable Neural-Probabilistic Answer Set Programming
Scalable Neural-Probabilistic Answer Set Programming
Arseny Skryagin
Daniel Ochs
D. Dhami
Kristian Kersting
32
5
0
14 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
30
0
0
10 Jun 2023
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Lennert De Smet
Pedro Zuidberg Dos Martires
Robin Manhaeve
G. Marra
Angelika Kimmig
Luc de Raedt
NAI
11
20
0
08 Mar 2023
Automatically Marginalized MCMC in Probabilistic Programming
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
21
3
0
01 Feb 2023
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
PyRelationAL: a python library for active learning research and
  development
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
19
0
0
23 May 2022
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
  via PAC-Bayes Objectives
Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs via PAC-Bayes Objectives
J. Warrell
M. Gerstein
GP
14
1
0
30 Mar 2022
On Reinforcement Learning, Effect Handlers, and the State Monad
On Reinforcement Learning, Effect Handlers, and the State Monad
Ugo Dal Lago
Francesco Gavazzo
Alexis Ghyselen
16
1
0
29 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
19
12
0
24 Feb 2022
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
Edward Kim
Jay Shenoy
Sebastian Junges
Daniel J. Fremont
Alberto L. Sangiovanni-Vincentelli
S. Seshia
35
3
0
01 Dec 2021
Toward an Idiomatic Framework for Cognitive Robotics
Toward an Idiomatic Framework for Cognitive Robotics
Malte Rørmose Damgaard
Rasmus Pedersen
T. Bak
LM&Ro
11
3
0
25 Nov 2021
Explaining Deep Tractable Probabilistic Models: The sum-product network
  case
Explaining Deep Tractable Probabilistic Models: The sum-product network case
Athresh Karanam
Saurabh Mathur
P. Radivojac
David M. Haas
Kristian Kersting
Sriraam Natarajan
FAtt
TPM
LRM
17
2
0
19 Oct 2021
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDL
TPM
AI4CE
28
3
0
12 Oct 2021
SLASH: Embracing Probabilistic Circuits into Neural Answer Set
  Programming
SLASH: Embracing Probabilistic Circuits into Neural Answer Set Programming
Arseny Skryagin
Wolfgang Stammer
Daniel Ochs
D. Dhami
Kristian Kersting
NAI
33
6
0
07 Oct 2021
Combining Probabilistic Logic and Deep Learning for Self-Supervised
  Learning
Combining Probabilistic Logic and Deep Learning for Self-Supervised Learning
Hoifung Poon
Hai Wang
Hunter Lang
SSL
11
2
0
27 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Variational Inference for Category Recommendation in E-Commerce
  platforms
Variational Inference for Category Recommendation in E-Commerce platforms
Ramasubramanian Balasubramanian
Venugopal Mani
Abhinav Mathur
Sushant Kumar
Kannan Achan
CML
DRL
23
1
0
15 Apr 2021
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive
  Architectures for Developmental Robots
A Whole Brain Probabilistic Generative Model: Toward Realizing Cognitive Architectures for Developmental Robots
T. Taniguchi
Hiroshi Yamakawa
Takayuki Nagai
Kenji Doya
M. Sakagami
Masahiro Suzuki
Tomoaki Nakamura
Akira Taniguchi
20
23
0
15 Mar 2021
RecSim NG: Toward Principled Uncertainty Modeling for Recommender
  Ecosystems
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
Martin Mladenov
Chih-Wei Hsu
Vihan Jain
Eugene Ie
Christopher Colby
Nicolas Mayoraz
H. Pham
Dustin Tran
Ivan Vendrov
Craig Boutilier
BDL
13
31
0
14 Mar 2021
Automatic variational inference with cascading flows
Automatic variational inference with cascading flows
L. Ambrogioni
Gianluigi Silvestri
Marcel van Gerven
TPM
BDL
19
8
0
09 Feb 2021
On Variational Inference for User Modeling in Attribute-Driven
  Collaborative Filtering
On Variational Inference for User Modeling in Attribute-Driven Collaborative Filtering
Venugopal Mani
Ramasubramanian Balasubramanian
Sushant Kumar
Abhinav Mathur
Kannan Achan
CML
BDL
EgoV
11
1
0
02 Dec 2020
Analysis of Bayesian Networks via Prob-Solvable Loops
Analysis of Bayesian Networks via Prob-Solvable Loops
E. Bartocci
L. Kovács
Miroslav Stankovič
TPM
8
12
0
18 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray L. Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
11
608
0
14 Jul 2020
Efficient Computation Reduction in Bayesian Neural Networks Through
  Feature Decomposition and Memorization
Efficient Computation Reduction in Bayesian Neural Networks Through Feature Decomposition and Memorization
Xiaotao Jia
Jianlei Yang
Runze Liu
Xueyan Wang
S. Cotofana
Weisheng Zhao
11
26
0
08 May 2020
Scaling Bayesian inference of mixed multinomial logit models to very
  large datasets
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Filipe Rodrigues
BDL
14
3
0
11 Apr 2020
A Differential-form Pullback Programming Language for Higher-order
  Reverse-mode Automatic Differentiation
A Differential-form Pullback Programming Language for Higher-order Reverse-mode Automatic Differentiation
Carol Mak
C.-H. Luke Ong
11
10
0
19 Feb 2020
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
16
5
0
09 Jan 2020
Probabilistic Software Modeling: A Data-driven Paradigm for Software
  Analysis
Probabilistic Software Modeling: A Data-driven Paradigm for Software Analysis
Hannes Thaller
L. Linsbauer
Rudolf Ramler
Alexander Egyed
23
3
0
17 Dec 2019
A probabilistic assessment of the Indo-Aryan Inner-Outer Hypothesis
A probabilistic assessment of the Indo-Aryan Inner-Outer Hypothesis
C. Cathcart
11
15
0
29 Nov 2019
Estimating uncertainty of earthquake rupture using Bayesian neural
  network
Estimating uncertainty of earthquake rupture using Bayesian neural network
S. Ahamed
Md Mesbah Uddin
11
5
0
21 Nov 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
18
19
0
29 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
19
93
0
14 Oct 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
26
146
0
14 Aug 2019
Transcriptional Response of SK-N-AS Cells to Methamidophos
Transcriptional Response of SK-N-AS Cells to Methamidophos
A. Vertes
Albert-Baskar Arul
P. Avar
Andrew R. Korte
Lida Parvin
...
C. Talcott
Brian M. Davis
Christine A. Morton
Christopher J. Sevinsky
M. Zavodszky
11
1
0
11 Aug 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
17
58
0
14 Jul 2019
On Open-Universe Causal Reasoning
On Open-Universe Causal Reasoning
D. Ibeling
Thomas F. Icard
LRM
AI4CE
18
8
0
04 Jul 2019
Hyper-Molecules: on the Representation and Recovery of Dynamical
  Structures, with Application to Flexible Macro-Molecular Structures in
  Cryo-EM
Hyper-Molecules: on the Representation and Recovery of Dynamical Structures, with Application to Flexible Macro-Molecular Structures in Cryo-EM
Roy R. Lederman
Joakim Andén
A. Singer
21
31
0
02 Jul 2019
GPU-based Parallel Computation Support for Stan
GPU-based Parallel Computation Support for Stan
Rok Cesnovar
S. Bronder
Davor Sluga
J. Demšar
Tadej Ciglarič
Sean Talts
Erik Štrumbelj
11
4
0
01 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
18
34
0
01 Jul 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
22
7
0
20 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,285
0
06 Jun 2019
Coupled VAE: Improved Accuracy and Robustness of a Variational
  Autoencoder
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
Shichen Cao
Jingjing Li
Kenric P. Nelson
Mark A. Kon
BDL
DRL
14
15
0
03 Jun 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
13
1
0
03 Apr 2019
LYRICS: a General Interface Layer to Integrate Logic Inference and Deep
  Learning
LYRICS: a General Interface Layer to Integrate Logic Inference and Deep Learning
G. Marra
Francesco Giannini
Michelangelo Diligenti
Marco Gori
AI4CE
24
11
0
18 Mar 2019
Applying Probabilistic Programming to Affective Computing
Applying Probabilistic Programming to Affective Computing
Desmond C. Ong
Harold Soh
Jamil Zaki
Noah D. Goodman
11
20
0
15 Mar 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for
  Non-Differentiable Models
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank D. Wood
23
24
0
06 Mar 2019
12
Next