Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1701.03757
Cited By
Deep Probabilistic Programming
13 January 2017
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Probabilistic Programming"
30 / 80 papers shown
Title
A Nonparametric Multi-view Model for Estimating Cell Type-Specific Gene Regulatory Networks
Cassandra Burdziak
E. Azizi
Sandhya Prabhakaran
D. Pe’er
14
14
0
21 Feb 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
W. Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric P. Xing
28
17
0
31 Jan 2019
Doubly Bayesian Optimization
Alexander Lavin
28
0
0
11 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
19
55
0
27 Nov 2018
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
22
56
0
05 Nov 2018
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
15
1,030
0
18 Oct 2018
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Guillaume Baudart
Javier Burroni
Martin Hirzel
Louis Mandel
Avraham Shinnar
BDL
11
4
0
30 Sep 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank D. Wood
GP
15
196
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
26
31
0
20 Jul 2018
Machine Learning in High Energy Physics Community White Paper
K. Albertsson
Piero Altoe
D. Anderson
John R. Anderson
Michael Andrews
...
Michael Williams
Wenjing Wu
Stefan Wunsch
Kun Yang
O. Zapata
AI4CE
11
220
0
08 Jul 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank D. Wood
BDL
9
23
0
26 May 2018
Myopic Bayesian Design of Experiments via Posterior Sampling and Probabilistic Programming
Kirthevasan Kandasamy
W. Neiswanger
Reed Zhang
A. Krishnamurthy
J. Schneider
Barnabás Póczós
14
5
0
25 May 2018
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
Improving Predictive Uncertainty Estimation using Dropout -- Hamiltonian Monte Carlo
Diego Vergara
S. Hernández
Matias Valdenegro-Toro
Felipe Jorquera
UQCV
BDL
19
0
0
12 May 2018
Deep Probabilistic Programming Languages: A Qualitative Study
Guillaume Baudart
Martin Hirzel
Louis Mandel
UQCV
TPM
13
8
0
17 Apr 2018
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Bradley Gram-Hansen
Yuanshuo Zhou
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank D. Wood
16
3
0
07 Apr 2018
Stochastic Variational Inference with Gradient Linearization
Tobias Plötz
Anne S. Wannenwetsch
Stefan Roth
6
2
0
28 Mar 2018
Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs
Forough Arabshahi
Sameer Singh
Anima Anandkumar
NAI
8
5
0
12 Jan 2018
Towards the Augmented Pathologist: Challenges of Explainable-AI in Digital Pathology
Andreas Holzinger
Bernd Malle
Peter Kieseberg
P. Roth
Heimo Muller
Robert Reihs
K. Zatloukal
17
91
0
18 Dec 2017
Variational Deep Q Network
Yunhao Tang
A. Kucukelbir
BDL
38
10
0
30 Nov 2017
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
44
346
0
28 Nov 2017
Programmable Agents
Misha Denil
Sergio Gomez Colmenarejo
Serkan Cabi
D. Saxton
Nando de Freitas
AI4CE
20
42
0
20 Jun 2017
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading
M. Dixon
Nicholas G. Polson
Vadim Sokolov
AI4TS
25
67
0
27 May 2017
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
22
84
0
22 May 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,502
0
25 Jan 2017
Variational Inference via
χ
χ
χ
-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
81
36
0
01 Nov 2016
Differentially Private Variational Inference for Non-conjugate Models
Joonas Jälkö
O. Dikmen
Antti Honkela
FedML
21
48
0
27 Oct 2016
Scene Grammars, Factor Graphs, and Belief Propagation
Jeroen Chua
Pedro F. Felzenszwalb
3DV
13
9
0
03 Jun 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
54
2,746
0
20 Feb 2015
Previous
1
2