ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Scalable marginalization of correlated latent variables with
  applications to learning particle interaction kernels
Scalable marginalization of correlated latent variables with applications to learning particle interaction kernels
Mengyang Gu
Xubo Liu
X. Fang
Sui Tang
57
8
0
16 Mar 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark Gales
UQCV
46
11
0
15 Mar 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
107
13
0
15 Mar 2022
Igeood: An Information Geometry Approach to Out-of-Distribution
  Detection
Igeood: An Information Geometry Approach to Out-of-Distribution Detection
Eduardo Dadalto Camara Gomes
F. Alberge
Pierre Duhamel
Pablo Piantanida
OODD
178
29
0
15 Mar 2022
Uncertainty Estimation for Language Reward Models
Uncertainty Estimation for Language Reward Models
Adam Gleave
G. Irving
UQLM
84
34
0
14 Mar 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
  Covariance, Expressivity, and Neural Tangent Kernel
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
76
0
0
14 Mar 2022
Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
  Equilibrium Computation
Efficient Model-based Multi-agent Reinforcement Learning via Optimistic Equilibrium Computation
Pier Giuseppe Sessa
Maryam Kamgarpour
Andreas Krause
60
17
0
14 Mar 2022
Uncertainty-Aware Text-to-Program for Question Answering on Structured
  Electronic Health Records
Uncertainty-Aware Text-to-Program for Question Answering on Structured Electronic Health Records
Daeyoung Kim
Seongsu Bae
S. Kim
Edward Choi
71
6
0
14 Mar 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
201
1,013
1
10 Mar 2022
Deep Regression Ensembles
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
59
4
0
10 Mar 2022
Semi-supervision semantic segmentation with uncertainty-guided self
  cross supervision
Semi-supervision semantic segmentation with uncertainty-guided self cross supervision
Yunyang Zhang
Zhiqiang Gong
Xiaohu Zheng
Xiaoyu Zhao
Wen Yao
UQCV
73
7
0
10 Mar 2022
Domain Generalization using Pretrained Models without Fine-tuning
Domain Generalization using Pretrained Models without Fine-tuning
Ziyue Li
Kan Ren
Xinyang Jiang
Yue Liu
Haipeng Zhang
Dongsheng Li
VLM
94
38
0
09 Mar 2022
Structure and Distribution Metric for Quantifying the Quality of
  Uncertainty: Assessing Gaussian Processes, Deep Neural Nets, and Deep Neural
  Operators for Regression
Structure and Distribution Metric for Quantifying the Quality of Uncertainty: Assessing Gaussian Processes, Deep Neural Nets, and Deep Neural Operators for Regression
Ethan Pickering
T. Sapsis
UQCV
54
6
0
09 Mar 2022
Estimating the Uncertainty in Emotion Class Labels with
  Utterance-Specific Dirichlet Priors
Estimating the Uncertainty in Emotion Class Labels with Utterance-Specific Dirichlet Priors
Wen Wu
Chuxu Zhang
Xixin Wu
P. Woodland
91
14
0
08 Mar 2022
Unknown-Aware Object Detection: Learning What You Don't Know from Videos
  in the Wild
Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild
Xuefeng Du
Xin Eric Wang
Gabriel Gozum
Yixuan Li
OODD
120
93
0
08 Mar 2022
Low-Loss Subspace Compression for Clean Gains against Multi-Agent
  Backdoor Attacks
Low-Loss Subspace Compression for Clean Gains against Multi-Agent Backdoor Attacks
Siddhartha Datta
N. Shadbolt
AAML
79
6
0
07 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDLUQCV
95
42
0
06 Mar 2022
Robust PAC$^m$: Training Ensemble Models Under Misspecification and
  Outliers
Robust PACm^mm: Training Ensemble Models Under Misspecification and Outliers
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
97
5
0
03 Mar 2022
T-Cal: An optimal test for the calibration of predictive models
T-Cal: An optimal test for the calibration of predictive models
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Yan Sun
149
22
0
03 Mar 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
100
28
0
02 Mar 2022
Understanding the Challenges When 3D Semantic Segmentation Faces Class
  Imbalanced and OOD Data
Understanding the Challenges When 3D Semantic Segmentation Faces Class Imbalanced and OOD Data
Yancheng Pan
Fan Xie
Huijing Zhao
CVBM
67
8
0
01 Mar 2022
RMBR: A Regularized Minimum Bayes Risk Reranking Framework for Machine
  Translation
RMBR: A Regularized Minimum Bayes Risk Reranking Framework for Machine Translation
Yidan Zhang
Boyi Deng
Dayiheng Liu
Baosong Yang
Zhenan He
67
2
0
01 Mar 2022
Evaluating High-Order Predictive Distributions in Deep Learning
Evaluating High-Order Predictive Distributions in Deep Learning
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Xiuyuan Lu
Benjamin Van Roy
84
10
0
28 Feb 2022
Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture
Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture
Takashi Furuya
Hiroyuki Kusumoto
K. Taniguchi
Naoya Kanno
Kazuma Suetake
88
1
0
26 Feb 2022
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification
  with Rejection from ECG Recordings
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification with Rejection from ECG Recordings
Wen-Rang Zhang
Xinxin Di
Guodong Wei
Shijia Geng
Zhaoji Fu
linda Qiao
UQCVBDL
51
2
0
26 Feb 2022
Raman Spectrum Matching with Contrastive Representation Learning
Raman Spectrum Matching with Contrastive Representation Learning
Yue Liu
Mikkel N. Schmidt
T. S. Alstrøm
41
10
0
25 Feb 2022
On Monocular Depth Estimation and Uncertainty Quantification using
  Classification Approaches for Regression
On Monocular Depth Estimation and Uncertainty Quantification using Classification Approaches for Regression
Xuanlong Yu
Gianni Franchi
Emanuel Aldea
UQCV
69
2
0
24 Feb 2022
Uncertainty-driven Planner for Exploration and Navigation
Uncertainty-driven Planner for Exploration and Navigation
G. Georgakis
Bernadette Bucher
Anton Arapin
Karl Schmeckpeper
Nikolai Matni
Kostas Daniilidis
87
53
0
24 Feb 2022
Multiple Importance Sampling ELBO and Deep Ensembles of Variational
  Approximations
Multiple Importance Sampling ELBO and Deep Ensembles of Variational Approximations
Oskar Kviman
Harald Melin
Hazal Koptagel
Victor Elvira
J. Lagergren
DRL
134
17
0
22 Feb 2022
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Laurens Sluijterman
Eric Cator
Tom Heskes
BDLUQCVFedML
52
2
0
22 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural
  Representations for Computed Tomography
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDLOODUQCV
76
13
0
22 Feb 2022
Deconstructing Distributions: A Pointwise Framework of Learning
Deconstructing Distributions: A Pointwise Framework of Learning
Gal Kaplun
Nikhil Ghosh
Saurabh Garg
Boaz Barak
Preetum Nakkiran
OOD
87
21
0
20 Feb 2022
Continual Learning Beyond a Single Model
Continual Learning Beyond a Single Model
T. Doan
Seyed Iman Mirzadeh
Mehrdad Farajtabar
CLL
92
16
0
20 Feb 2022
Accurate Prediction and Uncertainty Estimation using Decoupled
  Prediction Interval Networks
Accurate Prediction and Uncertainty Estimation using Decoupled Prediction Interval Networks
Kinjal Patel
Steven Waslander
UQCV
73
3
0
19 Feb 2022
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in
  Bayesian Deep Neural Networks
Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks
Jurijs Nazarovs
Ronak R. Mehta
Vishnu Suresh Lokhande
Vikas Singh
UQCVBDLOOD
48
5
0
19 Feb 2022
Transfer and Marginalize: Explaining Away Label Noise with Privileged
  Information
Transfer and Marginalize: Explaining Away Label Noise with Privileged Information
Mark Collier
Rodolphe Jenatton
Efi Kokiopoulou
Jesse Berent
56
13
0
18 Feb 2022
Data-SUITE: Data-centric identification of in-distribution incongruous
  examples
Data-SUITE: Data-centric identification of in-distribution incongruous examples
Nabeel Seedat
Jonathan Crabbé
Mihaela van der Schaar
OOD
73
14
0
17 Feb 2022
Ensemble Conformalized Quantile Regression for Probabilistic Time Series
  Forecasting
Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting
Vilde Jensen
F. Bianchi
S. N. Anfinsen
AI4TS
208
39
0
17 Feb 2022
Detecting and Learning the Unknown in Semantic Segmentation
Detecting and Learning the Unknown in Semantic Segmentation
Robin Shing Moon Chan
Svenja Uhlemeyer
Matthias Rottmann
Hanno Gottschalk
UQCV
102
5
0
17 Feb 2022
How to Fill the Optimum Set? Population Gradient Descent with Harmless
  Diversity
How to Fill the Optimum Set? Population Gradient Descent with Harmless Diversity
Chengyue Gong
Lemeng Wu
Qiang Liu
138
3
0
16 Feb 2022
Less is More: Surgical Phase Recognition from Timestamp Supervision
Less is More: Surgical Phase Recognition from Timestamp Supervision
Xinpeng Ding
Xinjian Yan
Zixun Wang
Wei Zhao
Jian Zhuang
Xiaowei Xu
Xiaomeng Li
MedIm
92
15
0
16 Feb 2022
Reducing Overconfidence Predictions for Autonomous Driving Perception
Reducing Overconfidence Predictions for Autonomous Driving Perception
Gledson Melotti
C. Premebida
Jordan J. Bird
Diego Resende Faria
Nuno Gonccalves
74
7
0
16 Feb 2022
Predicting on the Edge: Identifying Where a Larger Model Does Better
Predicting on the Edge: Identifying Where a Larger Model Does Better
Taman Narayan
Heinrich Jiang
Sen Zhao
Surinder Kumar
79
7
0
15 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OODUQCV
149
65
0
14 Feb 2022
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
Hao Guo
Jiyong Jin
B. Liu
FedML
80
1
0
14 Feb 2022
Deep Monte Carlo Quantile Regression for Quantifying Aleatoric
  Uncertainty in Physics-informed Temperature Field Reconstruction
Deep Monte Carlo Quantile Regression for Quantifying Aleatoric Uncertainty in Physics-informed Temperature Field Reconstruction
Xiaohu Zheng
Wen Yao
Zhiqiang Gong
Yunyang Zhang
Xiaoyu Zhao
Tingsong Jiang
22
4
0
14 Feb 2022
Real World Large Scale Recommendation Systems Reproducibility and Smooth
  Activations
Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations
G. Shamir
Dong Lin
HAIOffRL
63
7
0
14 Feb 2022
Improving Contextual Coherence in Variational Personalized and
  Empathetic Dialogue Agents
Improving Contextual Coherence in Variational Personalized and Empathetic Dialogue Agents
Jing Yang Lee
Kong Aik Lee
W. Gan
78
18
0
12 Feb 2022
Improving Generalization via Uncertainty Driven Perturbations
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Michael I. Jordan
Tatjana Chavdarova
AAMLAI4CE
85
4
0
11 Feb 2022
Bernstein Flows for Flexible Posteriors in Variational Bayes
Bernstein Flows for Flexible Posteriors in Variational Bayes
Oliver Durr
Stephan Hörling
Daniel Dold
Ivonne Kovylov
Beate Sick
BDL
99
4
0
11 Feb 2022
Previous
123...383940...636465
Next