ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Application of belief functions to medical image segmentation: A review
Application of belief functions to medical image segmentation: A review
Ling Huang
S. Ruan
Thierry Denoeux
EDLMedIm
86
31
0
03 May 2022
A Survey on Uncertainty Toolkits for Deep Learning
A Survey on Uncertainty Toolkits for Deep Learning
Maximilian Pintz
Joachim Sicking
Maximilian Poretschkin
Maram Akila
ELM
76
6
0
02 May 2022
Medical Coding with Biomedical Transformer Ensembles and Zero/Few-shot
  Learning
Medical Coding with Biomedical Transformer Ensembles and Zero/Few-shot Learning
Angelo Ziletti
Alan Akbik
Christoph Berns
T. Herold
Marion Legler
Martina Viell
MedIm
39
8
0
01 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
235
51
0
01 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
46
5
0
30 Apr 2022
Human-in-the-loop online multi-agent approach to increase
  trustworthiness in ML models through trust scores and data augmentation
Human-in-the-loop online multi-agent approach to increase trustworthiness in ML models through trust scores and data augmentation
Gusseppe Bravo Rocca
Peini Liu
Jordi Guitart
Ajay Dholakia
David Ellison
M. Hodak
60
2
0
29 Apr 2022
Tailored Uncertainty Estimation for Deep Learning Systems
Tailored Uncertainty Estimation for Deep Learning Systems
Joachim Sicking
Maram Akila
Jan David Schneider
Fabian Hüger
Peter Schlicht
Tim Wirtz
Stefan Wrobel
UQCV
74
2
0
29 Apr 2022
Reliable Visual Question Answering: Abstain Rather Than Answer
  Incorrectly
Reliable Visual Question Answering: Abstain Rather Than Answer Incorrectly
Spencer Whitehead
Suzanne Petryk
Vedaad Shakib
Joseph E. Gonzalez
Trevor Darrell
Anna Rohrbach
Marcus Rohrbach
107
56
0
28 Apr 2022
It's DONE: Direct ONE-shot learning with quantile weight imprinting
It's DONE: Direct ONE-shot learning with quantile weight imprinting
Kazufumi Hosoda
Keigo Nishida
S. Seno
Tomohiro Mashita
H. Kashioka
I. Ohzawa
62
2
0
28 Apr 2022
Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid
  Electric Vehicles
Uncertainty-Aware Prediction of Battery Energy Consumption for Hybrid Electric Vehicles
Jihed Khiari
Cristina Olaverri-Monreal
56
2
0
27 Apr 2022
Uncertainty Quantification for nonparametric regression using Empirical
  Bayesian neural networks
Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks
Stefan Franssen
Botond Szabó
BDLUQCV
91
4
0
27 Apr 2022
Trusted Multi-View Classification with Dynamic Evidential Fusion
Trusted Multi-View Classification with Dynamic Evidential Fusion
Zongbo Han
Changqing Zhang
Huazhu Fu
Qiufeng Wang
EDL
90
233
0
25 Apr 2022
Learning by Erasing: Conditional Entropy based Transferable
  Out-Of-Distribution Detection
Learning by Erasing: Conditional Entropy based Transferable Out-Of-Distribution Detection
Meng Xing
Zhiyong Feng
Yong Su
Changjae Oh
OODD
74
4
0
23 Apr 2022
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
Matias Valdenegro-Toro
Daniel Saromo
UDPERBDLUQCV
72
86
0
20 Apr 2022
A Taxonomy of Error Sources in HPC I/O Machine Learning Models
A Taxonomy of Error Sources in HPC I/O Machine Learning Models
Mihailo Isakov
Mikaela Currier
Eliakin Del Rosario
Sandeep Madireddy
Prasanna Balaprakash
P. Carns
R. Ross
Glenn K. Lockwood
Michel A. Kinsy
69
2
0
18 Apr 2022
UFRC: A Unified Framework for Reliable COVID-19 Detection on
  Crowdsourced Cough Audio
UFRC: A Unified Framework for Reliable COVID-19 Detection on Crowdsourced Cough Audio
Jiangeng Chang
Y. Ruan
Shaoze Cui
John Soong Tshon Yit
Mengling Feng
57
6
0
16 Apr 2022
Control-oriented meta-learning
Control-oriented meta-learning
Spencer M. Richards
Navid Azizan
Jean-Jacques E. Slotine
Marco Pavone
77
26
0
14 Apr 2022
Disentangling Uncertainty in Machine Translation Evaluation
Disentangling Uncertainty in Machine Translation Evaluation
Chrysoula Zerva
T. Glushkova
Ricardo Rei
André F.T. Martins
UDUQCV
103
9
0
13 Apr 2022
Out-of-Distribution Detection with Deep Nearest Neighbors
Out-of-Distribution Detection with Deep Nearest Neighbors
Yiyou Sun
Yifei Ming
Xiaojin Zhu
Yixuan Li
OODD
218
536
0
13 Apr 2022
A high-resolution canopy height model of the Earth
A high-resolution canopy height model of the Earth
Nico Lang
W. Jetz
Konrad Schindler
Jan Dirk Wegner
65
288
0
13 Apr 2022
Training a Helpful and Harmless Assistant with Reinforcement Learning
  from Human Feedback
Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
Yuntao Bai
Andy Jones
Kamal Ndousse
Amanda Askell
Anna Chen
...
Jack Clark
Sam McCandlish
C. Olah
Benjamin Mann
Jared Kaplan
262
2,631
0
12 Apr 2022
Reducing Model Jitter: Stable Re-training of Semantic Parsers in
  Production Environments
Reducing Model Jitter: Stable Re-training of Semantic Parsers in Production Environments
Christopher Hidey
Fei Liu
Rahul Goel
89
4
0
10 Apr 2022
Is my Driver Observation Model Overconfident? Input-guided Calibration
  Networks for Reliable and Interpretable Confidence Estimates
Is my Driver Observation Model Overconfident? Input-guided Calibration Networks for Reliable and Interpretable Confidence Estimates
Alina Roitberg
Kunyu Peng
David Schneider
Kailun Yang
Marios Koulakis
Manuel Martínez
Rainer Stiefelhagen
UQCV
68
9
0
10 Apr 2022
Uncertainty-Informed Deep Learning Models Enable High-Confidence
  Predictions for Digital Histopathology
Uncertainty-Informed Deep Learning Models Enable High-Confidence Predictions for Digital Histopathology
J. Dolezal
Andrew Srisuwananukorn
D. Karpeyev
S. Ramesh
S. Kochanny
...
Jefree J. Schulte
E. Vokes
M. Garassino
A. Husain
A. Pearson
OOD
146
97
0
09 Apr 2022
Unsupervised Uncertainty Measures of Automatic Speech Recognition for
  Non-intrusive Speech Intelligibility Prediction
Unsupervised Uncertainty Measures of Automatic Speech Recognition for Non-intrusive Speech Intelligibility Prediction
Zehai Tu
Ning Ma
Jon Barker
53
17
0
08 Apr 2022
Hybrid LMC: Hybrid Learning and Model-based Control for Wheeled Humanoid
  Robot via Ensemble Deep Reinforcement Learning
Hybrid LMC: Hybrid Learning and Model-based Control for Wheeled Humanoid Robot via Ensemble Deep Reinforcement Learning
D. Baek
Amartya Purushottam
Joao Ramos
78
10
0
07 Apr 2022
Discovering and forecasting extreme events via active learning in neural
  operators
Discovering and forecasting extreme events via active learning in neural operators
Ethan Pickering
Stephen Guth
George Karniadakis
T. Sapsis
AI4CE
79
59
0
05 Apr 2022
A deep learning framework for the detection and quantification of drusen
  and reticular pseudodrusen on optical coherence tomography
A deep learning framework for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography
R. Schwartz
Hagar Khalid
S. Liakopoulos
Y. Ouyang
Coen de Vente
...
Zhichao Wu
Himeesh Kumar
Joseph Farrington
C. Sánchez
A. Tufail
40
26
0
05 Apr 2022
A Survey on Dropout Methods and Experimental Verification in
  Recommendation
A Survey on Dropout Methods and Experimental Verification in Recommendation
Yongqian Li
Weizhi Ma
C. L. Philip Chen
Hao Fei
Yiqun Liu
Shaoping Ma
Yue Yang
90
11
0
05 Apr 2022
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
  Neural Networks for Traffic Forecasting
Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph Neural Networks for Traffic Forecasting
Tanwi Mallick
Prasanna Balaprakash
Jane Macfarlane
BDL
65
11
0
04 Apr 2022
Efficient, Uncertainty-based Moderation of Neural Networks Text
  Classifiers
Efficient, Uncertainty-based Moderation of Neural Networks Text Classifiers
J. S. Andersen
W. Maalej
62
9
0
04 Apr 2022
Autoencoder Attractors for Uncertainty Estimation
Autoencoder Attractors for Uncertainty Estimation
S. Cruz
B. Taetz
Thomas Stifter
D. Stricker
UQCV
79
9
0
01 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDLUD
94
51
0
30 Mar 2022
Learning Structured Gaussians to Approximate Deep Ensembles
Learning Structured Gaussians to Approximate Deep Ensembles
Ivor J. A. Simpson
Sara Vicente
Neill D. F. Campbell
UQCV
42
10
0
29 Mar 2022
Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
  Estimation
Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose Estimation
Jogendra Nath Kundu
Siddharth Seth
YM Pradyumna
Varun Jampani
Anirban Chakraborty
R. Venkatesh Babu
3DH
79
32
0
29 Mar 2022
Understanding out-of-distribution accuracies through quantifying
  difficulty of test samples
Understanding out-of-distribution accuracies through quantifying difficulty of test samples
Berfin Simsek
Melissa Hall
Levent Sagun
64
5
0
28 Mar 2022
Expanding Low-Density Latent Regions for Open-Set Object Detection
Expanding Low-Density Latent Regions for Open-Set Object Detection
Jiaming Han
Yuqiang Ren
Jian Ding
Xingjia Pan
Ke Yan
Guisong Xia
ObjD
113
63
0
28 Mar 2022
Graph Neural Networks in Particle Physics: Implementations, Innovations,
  and Challenges
Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges
S. Thais
P. Calafiura
G. Chachamis
G. Dezoort
Javier Mauricio Duarte
S. Ganguly
Michael Kagan
D. Murnane
Mark S. Neubauer
K. Terao
PINNAI4CE
121
31
0
23 Mar 2022
Enabling faster and more reliable sonographic assessment of gestational
  age through machine learning
Enabling faster and more reliable sonographic assessment of gestational age through machine learning
Chace Lee
Angelica Willis
Christina W. Chen
M. Sieniek
Akib A Uddin
...
Rory Pilgrim
Katherine Chou
Daniel Tse
S. Shetty
Ryan G. Gomes
47
0
0
22 Mar 2022
Calibration of Machine Reading Systems at Scale
Calibration of Machine Reading Systems at Scale
Shehzaad Dhuliawala
Leonard Adolphs
Rajarshi Das
Mrinmaya Sachan
82
12
0
20 Mar 2022
Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection
Subspace Modeling for Fast Out-Of-Distribution and Anomaly Detection
I. Ndiour
Nilesh A. Ahuja
Omesh Tickoo
OODD
51
5
0
20 Mar 2022
Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
  Quantification
Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty Quantification
Jianxiong Shen
Antonio Agudo
Francesc Moreno-Noguer
Adria Ruiz
AI4CE
129
59
0
18 Mar 2022
AI system for fetal ultrasound in low-resource settings
AI system for fetal ultrasound in low-resource settings
Ryan G. Gomes
B. Vwalika
Chace Lee
Angelica Willis
M. Sieniek
...
L. Peng
Katherine Chou
Daniel Tse
J. Stringer
S. Shetty
44
2
0
18 Mar 2022
Transframer: Arbitrary Frame Prediction with Generative Models
Transframer: Arbitrary Frame Prediction with Generative Models
C. Nash
João Carreira
Jacob Walker
Iain Barr
Andrew Jaegle
Mateusz Malinowski
Peter W. Battaglia
ViT
118
38
0
17 Mar 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCVBDLGP
108
37
0
17 Mar 2022
Contrastive Learning for Cross-Domain Open World Recognition
Contrastive Learning for Cross-Domain Open World Recognition
Francesco Cappio Borlino
S. Bucci
Tatiana Tommasi
SSL
65
3
0
17 Mar 2022
On the Pitfalls of Heteroscedastic Uncertainty Estimation with
  Probabilistic Neural Networks
On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks
Maximilian Seitzer
Arash Tavakoli
Dimitrije Antic
Georg Martius
BDLUQCV
86
90
0
17 Mar 2022
Hyperbolic Uncertainty Aware Semantic Segmentation
Bike Chen
Wei Peng
Xiaofeng Cao
Juha Roning
UQCV
106
17
0
16 Mar 2022
Layer Ensembles: A Single-Pass Uncertainty Estimation in Deep Learning
  for Segmentation
Layer Ensembles: A Single-Pass Uncertainty Estimation in Deep Learning for Segmentation
Kaisar Kushibar
Víctor M. Campello
Lidia Garrucho Moras
Akis Linardos
Petia Radeva
Karim Lekadir
UQCV
61
18
0
16 Mar 2022
PMAL: Open Set Recognition via Robust Prototype Mining
PMAL: Open Set Recognition via Robust Prototype Mining
Jing Lu
Yunxu Xu
Hao Li
Zhanzhan Cheng
Yi Niu
78
57
0
16 Mar 2022
Previous
123...373839...636465
Next