Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,406 papers shown
Title
Training Feedforward Neural Networks with Standard Logistic Activations is Feasible
Emanuele Sansone
F. D. De Natale
24
4
0
03 Oct 2017
How regularization affects the critical points in linear networks
Amirhossein Taghvaei
Jin-Won Kim
P. Mehta
26
13
0
27 Sep 2017
On Principal Components Regression, Random Projections, and Column Subsampling
M. Slawski
9
20
0
23 Sep 2017
Feedforward and Recurrent Neural Networks Backward Propagation and Hessian in Matrix Form
Maxim Naumov
23
9
0
16 Sep 2017
ClickBAIT: Click-based Accelerated Incremental Training of Convolutional Neural Networks
Ervin Teng
João Diogo Falcão
Bob Iannucci
33
14
0
15 Sep 2017
The Impact of Local Geometry and Batch Size on Stochastic Gradient Descent for Nonconvex Problems
V. Patel
MLT
17
8
0
14 Sep 2017
Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
ODL
14
143
0
25 Aug 2017
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
28
210
0
23 Aug 2017
Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates
L. Smith
Nicholay Topin
AI4CE
20
519
0
23 Aug 2017
Regularizing and Optimizing LSTM Language Models
Stephen Merity
N. Keskar
R. Socher
60
1,091
0
07 Aug 2017
On the convergence properties of a
K
K
K
-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
46
232
0
03 Aug 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAML
ODL
19
44
0
26 Jul 2017
Warped Riemannian metrics for location-scale models
Salem Said
Lionel Bombrun
Y. Berthoumieu
37
15
0
22 Jul 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
26
38
0
04 Jul 2017
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
Frank E. Curtis
K. Scheinberg
39
45
0
30 Jun 2017
Efficiency of quantum versus classical annealing in non-convex learning problems
Carlo Baldassi
R. Zecchina
16
43
0
26 Jun 2017
Faster independent component analysis by preconditioning with Hessian approximations
Pierre Ablin
J. Cardoso
Alexandre Gramfort
CML
28
124
0
25 Jun 2017
Collaborative Deep Learning in Fixed Topology Networks
Zhanhong Jiang
Aditya Balu
C. Hegde
S. Sarkar
FedML
21
179
0
23 Jun 2017
Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations
Jialei Wang
Tong Zhang
19
12
0
21 Jun 2017
Gradient Diversity: a Key Ingredient for Scalable Distributed Learning
Dong Yin
A. Pananjady
Max Lam
Dimitris Papailiopoulos
Kannan Ramchandran
Peter L. Bartlett
9
11
0
18 Jun 2017
Stochastic Training of Neural Networks via Successive Convex Approximations
Simone Scardapane
P. Di Lorenzo
22
9
0
15 Jun 2017
Proximal Backpropagation
Thomas Frerix
Thomas Möllenhoff
Michael Möller
Daniel Cremers
23
31
0
14 Jun 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
22
3,649
0
08 Jun 2017
Diagonal Rescaling For Neural Networks
Jean Lafond
Nicolas Vasilache
Léon Bottou
6
11
0
25 May 2017
Diminishing Batch Normalization
Yintai Ma
Diego Klabjan
31
15
0
22 May 2017
On the diffusion approximation of nonconvex stochastic gradient descent
Junyang Qian
C. J. Li
Lei Li
Jianguo Liu
DiffM
23
24
0
22 May 2017
EE-Grad: Exploration and Exploitation for Cost-Efficient Mini-Batch SGD
Mehmet A. Donmez
Maxim Raginsky
A. Singer
FedML
9
0
0
19 May 2017
An Investigation of Newton-Sketch and Subsampled Newton Methods
A. Berahas
Raghu Bollapragada
J. Nocedal
19
111
0
17 May 2017
Efficient Parallel Methods for Deep Reinforcement Learning
Alfredo V. Clemente
Humberto Nicolás Castejón Martínez
A. Chandra
9
114
0
13 May 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
23
714
0
09 May 2017
SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering
Hsiou-Yuan Liu
Dehong Liu
Hassan Mansour
P. Boufounos
Laura Waller
Ulugbek S. Kamilov
9
75
0
05 May 2017
Bandit Structured Prediction for Neural Sequence-to-Sequence Learning
Julia Kreutzer
Artem Sokolov
Stefan Riezler
27
49
0
21 Apr 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
27
153
0
17 Apr 2017
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
38
119
0
17 Mar 2017
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
46
757
0
15 Mar 2017
Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
Hiroyuki Kasai
Hiroyuki Sato
Bamdev Mishra
13
22
0
15 Mar 2017
Learning across scales - A multiscale method for Convolution Neural Networks
E. Haber
Lars Ruthotto
E. Holtham
Seong-Hwan Jun
17
23
0
06 Mar 2017
Stochastic Functional Gradient for Motion Planning in Continuous Occupancy Maps
Gilad Francis
Lionel Ott
F. Ramos
16
16
0
01 Mar 2017
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
28
597
0
01 Mar 2017
Stochastic Newton and Quasi-Newton Methods for Large Linear Least-squares Problems
Julianne Chung
Matthias Chung
J. T. Slagel
L. Tenorio
27
11
0
23 Feb 2017
On SGD's Failure in Practice: Characterizing and Overcoming Stalling
V. Patel
16
1
0
01 Feb 2017
Stochastic Subsampling for Factorizing Huge Matrices
A. Mensch
Julien Mairal
B. Thirion
Gaël Varoquaux
9
30
0
19 Jan 2017
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
27
2,096
0
17 Jan 2017
Stochastic Generative Hashing
Bo Dai
Ruiqi Guo
Sanjiv Kumar
Niao He
Le Song
TPM
35
106
0
11 Jan 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
60
1,878
0
08 Oct 2016
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
A. Bietti
Julien Mairal
44
36
0
04 Oct 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
Benchmarking State-of-the-Art Deep Learning Software Tools
S. Shi
Qiang-qiang Wang
Pengfei Xu
Xiaowen Chu
BDL
14
327
0
25 Aug 2016
DOOMED: Direct Online Optimization of Modeling Errors in Dynamics
Nathan D. Ratliff
Franziska Meier
Daniel Kappler
S. Schaal
17
17
0
01 Aug 2016
Previous
1
2
3
...
27
28
29
Next