34
12

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations

Jialei Wang
Tong Zhang
Abstract

We present novel minibatch stochastic optimization methods for empirical risk minimization problems, the methods efficiently leverage variance reduced first-order and sub-sampled higher-order information to accelerate the convergence speed. For quadratic objectives, we prove improved iteration complexity over state-of-the-art under reasonable assumptions. We also provide empirical evidence of the advantages of our method compared to existing approaches in the literature.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.