ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.05699
9
11

Gradient Diversity: a Key Ingredient for Scalable Distributed Learning

18 June 2017
Dong Yin
A. Pananjady
Max Lam
Dimitris Papailiopoulos
Kannan Ramchandran
Peter L. Bartlett
ArXivPDFHTML
Abstract

It has been experimentally observed that distributed implementations of mini-batch stochastic gradient descent (SGD) algorithms exhibit speedup saturation and decaying generalization ability beyond a particular batch-size. In this work, we present an analysis hinting that high similarity between concurrently processed gradients may be a cause of this performance degradation. We introduce the notion of gradient diversity that measures the dissimilarity between concurrent gradient updates, and show its key role in the performance of mini-batch SGD. We prove that on problems with high gradient diversity, mini-batch SGD is amenable to better speedups, while maintaining the generalization performance of serial (one sample) SGD. We further establish lower bounds on convergence where mini-batch SGD slows down beyond a particular batch-size, solely due to the lack of gradient diversity. We provide experimental evidence indicating the key role of gradient diversity in distributed learning, and discuss how heuristics like dropout, Langevin dynamics, and quantization can improve it.

View on arXiv
Comments on this paper