ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10077
6
98

Random Shuffling Beats SGD after Finite Epochs

26 June 2018
Jeff Z. HaoChen
S. Sra
ArXivPDFHTML
Abstract

A long-standing problem in the theory of stochastic gradient descent (SGD) is to prove that its without-replacement version RandomShuffle converges faster than the usual with-replacement version. We present the first (to our knowledge) non-asymptotic solution to this problem, which shows that after a "reasonable" number of epochs RandomShuffle indeed converges faster than SGD. Specifically, we prove that under strong convexity and second-order smoothness, the sequence generated by RandomShuffle converges to the optimal solution at the rate O(1/T^2 + n^3/T^3), where n is the number of components in the objective, and T is the total number of iterations. This result shows that after a reasonable number of epochs RandomShuffle is strictly better than SGD (which converges as O(1/T)). The key step toward showing this better dependence on T is the introduction of n into the bound; and as our analysis will show, in general a dependence on n is unavoidable without further changes to the algorithm. We show that for sparse data RandomShuffle has the rate O(1/T^2), again strictly better than SGD. Furthermore, we discuss extensions to nonconvex gradient dominated functions, as well as non-strongly convex settings.

View on arXiv
Comments on this paper