Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.08754
Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Faster Eigenvector Computation via Shift-and-Invert Preconditioning"
50 / 746 papers shown
Title
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
19
15
0
25 Mar 2021
TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL
Clément Romac
Rémy Portelas
Katja Hofmann
Pierre-Yves Oudeyer
27
21
0
17 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
22
68
0
14 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
220
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
EBMs Trained with Maximum Likelihood are Generator Models Trained with a Self-adverserial Loss
Zhisheng Xiao
Qing Yan
Y. Amit
32
2
0
23 Feb 2021
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
24
50
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
Robust Classification using Hidden Markov Models and Mixtures of Normalizing Flows
Anubhab Ghosh
Antoine Honoré
Dong Liu
G. Henter
S. Chatterjee
BDL
VLM
35
7
0
15 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
24
49
0
09 Feb 2021
Invertible Neural Networks versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence
A. Andrle
N. Farchmin
Paul Hagemann
Sebastian Heidenreich
V. Soltwisch
Gabriele Steidl
69
16
0
05 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
187
0
01 Feb 2021
Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting
Nam H. Nguyen
Brian Quanz
BDL
AI4TS
137
66
0
25 Jan 2021
Adversarial Text-to-Image Synthesis: A Review
Stanislav Frolov
Tobias Hinz
Federico Raue
Jörn Hees
Andreas Dengel
EGVM
22
175
0
25 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
625
0
22 Jan 2021
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
241
0
09 Jan 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
31
9
0
18 Dec 2020
Motion Mappings for Continuous Bilateral Teleoperation
Xiao Gao
João Silvério
Emmanuel Pignat
Sylvain Calinon
Miao Li
Xiaohui Xiao
8
21
0
11 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Bayesian Image Reconstruction using Deep Generative Models
Razvan Marinescu
Daniel Moyer
Polina Golland
OOD
DiffM
23
39
0
08 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
30
22
0
05 Dec 2020
Image Generators with Conditionally-Independent Pixel Synthesis
Ivan Anokhin
K. Demochkin
Taras Khakhulin
Gleb Sterkin
Victor Lempitsky
Denis Korzhenkov
36
156
0
27 Nov 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
46
6,088
0
26 Nov 2020
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
336
0
20 Nov 2020
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
24
27
0
11 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
21
97
0
06 Nov 2020
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
27
1
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
23
34
0
03 Nov 2020
Toward a Generalization Metric for Deep Generative Models
Hoang Thanh-Tung
T. Tran
35
5
0
02 Nov 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
17
74
0
27 Oct 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
32
41
0
26 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
112
46
0
19 Oct 2020
Orbital MCMC
Kirill Neklyudov
Max Welling
26
7
0
15 Oct 2020
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
83
1,292
0
08 Oct 2020
Representing Point Clouds with Generative Conditional Invertible Flow Networks
Michal Stypulkowski
Kacper Kania
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
J. Chorowski
3DPC
24
4
0
07 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
25
14
0
07 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,944
0
06 Oct 2020
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
32
13
0
05 Oct 2020
Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation
Wenhao Ding
Baiming Chen
Bo-wen Li
Kim Ji Eun
Ding Zhao
AAML
16
99
0
16 Sep 2020
Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks
F. Balsiger
Alain Jungo
Olivier Scheidegger
B. Marty
M. Reyes
21
3
0
10 Aug 2020
Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications
Xuan Li
Xun Huang
Jiahui Yu
Ting-Chun Wang
Arun Mallya
GAN
28
153
0
06 Aug 2020
Previous
1
2
3
...
10
11
12
13
14
15
Next