ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08754
  4. Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning

Faster Eigenvector Computation via Shift-and-Invert Preconditioning

26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
ArXivPDFHTML

Papers citing "Faster Eigenvector Computation via Shift-and-Invert Preconditioning"

50 / 786 papers shown
Title
RecVAE: a New Variational Autoencoder for Top-N Recommendations with
  Implicit Feedback
RecVAE: a New Variational Autoencoder for Top-N Recommendations with Implicit Feedback
Ilya Shenbin
Anton M. Alekseev
E. Tutubalina
Valentin Malykh
Sergey I. Nikolenko
BDL
DRL
18
196
0
24 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
C-Flow: Conditional Generative Flow Models for Images and 3D Point
  Clouds
C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds
Albert Pumarola
S. Popov
Francesc Moreno-Noguer
V. Ferrari
3DPC
AI4CE
31
80
0
15 Dec 2019
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with
  Adaptive Solvers
InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers
T. Nguyen
Animesh Garg
Richard G. Baraniuk
Anima Anandkumar
TPM
28
9
0
09 Dec 2019
Learning Multi-layer Latent Variable Model via Variational Optimization
  of Short Run MCMC for Approximate Inference
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song-Chun Zhu
Ying Nian Wu
BDL
DRL
19
2
0
04 Dec 2019
Automated Dependence Plots
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
Self-attention with Functional Time Representation Learning
Self-attention with Functional Time Representation Learning
Da Xu
Chuanwei Ruan
Sushant Kumar
Evren Körpeoglu
Kannan Achan
AI4TS
17
114
0
28 Nov 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
16
642
0
07 Nov 2019
Weight of Evidence as a Basis for Human-Oriented Explanations
Weight of Evidence as a Basis for Human-Oriented Explanations
David Alvarez-Melis
Hal Daumé
Jennifer Wortman Vaughan
Hanna M. Wallach
XAI
FAtt
21
20
0
29 Oct 2019
On Investigation of Unsupervised Speech Factorization Based on
  Normalization Flow
On Investigation of Unsupervised Speech Factorization Based on Normalization Flow
Haoran Sun
Yunqi Cai
Lantian Li
Dong Wang
21
1
0
29 Oct 2019
Uncertainty Quantification with Generative Models
Uncertainty Quantification with Generative Models
Vanessa Böhm
F. Lanusse
U. Seljak
30
25
0
22 Oct 2019
Target-Oriented Deformation of Visual-Semantic Embedding Space
Target-Oriented Deformation of Visual-Semantic Embedding Space
Takashi Matsubara
26
7
0
15 Oct 2019
FIS-GAN: GAN with Flow-based Importance Sampling
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
24
3
0
06 Oct 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
33
0
0
04 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
16
6
0
02 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
  Flows
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
22
2
0
30 Sep 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
216
0
30 Sep 2019
Towards neural networks that provably know when they don't know
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
33
139
0
26 Sep 2019
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point Processes
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
27
167
0
26 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDL
DRL
AI4TS
27
84
0
24 Aug 2019
DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer
DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer
Haoliang Sun
Ronak R. Mehta
H. Zhou
Z. Huang
Sterling C. Johnson
V. Prabhakaran
Vikas Singh
MedIm
31
46
0
21 Aug 2019
Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to
  Constrain Distance Estimates
Modeling the Gaia Color-Magnitude Diagram with Bayesian Neural Flows to Constrain Distance Estimates
M. Cranmer
Richard Galvez
L. Anderson
D. Spergel
S. Ho
16
7
0
21 Aug 2019
Survey on Deep Neural Networks in Speech and Vision Systems
Survey on Deep Neural Networks in Speech and Vision Systems
M. Alam
Manar D. Samad
Lasitha Vidyaratne
Alexander M. Glandon
Khan M. Iftekharuddin
3DV
VLM
AI4TS
34
205
0
16 Aug 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
31
146
0
14 Aug 2019
MadMiner: Machine learning-based inference for particle physics
MadMiner: Machine learning-based inference for particle physics
Johann Brehmer
F. Kling
Irina Espejo
Kyle Cranmer
21
113
0
24 Jul 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
29
11
0
24 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
142
0
17 Jul 2019
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Magnus Wiese
R. Knobloch
R. Korn
DRL
18
21
0
07 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Jinwei Gu
Ming-Yu Liu
Serge J. Belongie
Bharath Hariharan
3DPC
40
656
0
28 Jun 2019
Perceptual Generative Autoencoders
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRL
GAN
19
28
0
25 Jun 2019
Shaping Belief States with Generative Environment Models for RL
Shaping Belief States with Generative Environment Models for RL
Karol Gregor
Danilo Jimenez Rezende
F. Besse
Yan Wu
Hamza Merzic
Aaron van den Oord
OffRL
AI4CE
16
117
0
21 Jun 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
44
254
0
19 Jun 2019
Disentangled Inference for GANs with Latently Invertible Autoencoder
Disentangled Inference for GANs with Latently Invertible Autoencoder
Jiapeng Zhu
Deli Zhao
Bo-Wen Zhang
Bolei Zhou
GAN
DRL
30
35
0
19 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
22
39
0
11 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
48
57
0
05 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
24
63
0
03 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
16
1,767
0
02 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
32
14
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDL
DRL
21
72
0
30 May 2019
Graph Normalizing Flows
Graph Normalizing Flows
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDL
GNN
AI4CE
27
154
0
30 May 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
26
146
0
28 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Non-Autoregressive Neural Text-to-Speech
Non-Autoregressive Neural Text-to-Speech
Kainan Peng
Ming-Yu Liu
Z. Song
Kexin Zhao
29
39
0
21 May 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
25
12
0
19 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
14
157
0
17 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
22
141
0
07 May 2019
Previous
123...13141516
Next