Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.08754
Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Faster Eigenvector Computation via Shift-and-Invert Preconditioning"
50 / 786 papers shown
Title
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
37
1,357
0
01 May 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
29
209
0
22 Apr 2019
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
24
27
0
17 Apr 2019
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic Grasping
Mengyuan Yan
A. Li
Mrinal Kalakrishnan
P. Pastor
15
18
0
15 Apr 2019
A Learned Representation for Scalable Vector Graphics
Raphael Gontijo-Lopes
David R Ha
Douglas Eck
Jonathon Shlens
GAN
OCL
30
113
0
04 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
22
69
0
30 Mar 2019
High Fidelity Face Manipulation with Extreme Poses and Expressions
Chaoyou Fu
Yibo Hu
Xiang Wu
Guoli Wang
Qian Zhang
Ran He
CVBM
29
25
0
28 Mar 2019
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSL
DRL
30
116
0
28 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
Hierarchical Autoregressive Image Models with Auxiliary Decoders
J. Fauw
Sander Dieleman
Karen Simonyan
GAN
30
37
0
06 Mar 2019
High-Fidelity Image Generation With Fewer Labels
Mario Lucic
Michael Tschannen
Marvin Ritter
Xiaohua Zhai
Olivier Bachem
Sylvain Gelly
GAN
OOD
36
157
0
06 Mar 2019
VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar
Mohammad Babaeizadeh
D. Erhan
Chelsea Finn
Sergey Levine
Laurent Dinh
Durk Kingma
VGen
25
131
0
04 Mar 2019
Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks
Jonas Rothfuss
Fabio Ferreira
Simon Walther
Maxim Ulrich
TPM
24
73
0
03 Mar 2019
Video Extrapolation with an Invertible Linear Embedding
Robert Pottorff
Jared Nielsen
David Wingate
14
5
0
01 Mar 2019
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs
A. Gholami
Kurt Keutzer
George Biros
30
166
0
27 Feb 2019
TF-Replicator: Distributed Machine Learning for Researchers
P. Buchlovsky
David Budden
Dominik Grewe
Chris Jones
John Aslanides
...
Aidan Clark
Sergio Gomez Colmenarejo
Aedan Pope
Fabio Viola
Dan Belov
GNN
OffRL
AI4CE
29
20
0
01 Feb 2019
Improving Evolutionary Strategies with Generative Neural Networks
Louis Faury
Clément Calauzènes
Olivier Fercoq
Syrine Krichene
19
12
0
31 Jan 2019
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
11
98
0
30 Jan 2019
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
19
193
0
29 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
27
36
0
24 Jan 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
Coupling the reduced-order model and the generative model for an importance sampling estimator
Xiaoliang Wan
Shuangqing Wei
16
10
0
23 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
46
854
0
18 Jan 2019
Understanding the (un)interpretability of natural image distributions using generative models
Ryen Krusinga
Sohil Shah
Matthias Zwicker
Tom Goldstein
David Jacobs
DiffM
FAtt
GAN
28
11
0
06 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
15
39
0
06 Jan 2019
AdaFlow: Domain-Adaptive Density Estimator with Application to Anomaly Detection and Unpaired Cross-Domain Translation
Masataka Yamaguchi
Yuma Koizumi
N. Harada
14
37
0
14 Dec 2018
StoryGAN: A Sequential Conditional GAN for Story Visualization
Yitong Li
Zhe Gan
Yelong Shen
Jingjing Liu
Yu Cheng
Yuexin Wu
Lawrence Carin
David Carlson
Jianfeng Gao
33
226
0
06 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
638
0
29 Nov 2018
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
22
618
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
24
166
0
01 Nov 2018
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
13
110
0
26 Oct 2018
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
17
849
0
02 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
12
27
0
01 Oct 2018
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
21
483
0
14 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
19
3,081
0
09 Jul 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
27
44
0
12 Jun 2018
Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
L. Mosser
O. Dubrule
M. Blunt
GAN
AI4CE
89
206
0
10 Jun 2018
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
23
149
0
31 May 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
MGGAN: Solving Mode Collapse using Manifold Guided Training
Duhyeon Bang
Hyunjung Shim
GAN
30
77
0
12 Apr 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
22
433
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
18
249
0
15 Mar 2018
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
35
112
0
23 Feb 2018
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
35
332
0
20 Feb 2018
Previous
1
2
3
...
14
15
16
Next