Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.05953
Cited By
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
18 March 2016
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Katyusha: The First Direct Acceleration of Stochastic Gradient Methods"
50 / 297 papers shown
Title
A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
Quoc Tran-Dinh
16
25
0
01 Mar 2020
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
Mahmoud Assran
Michael G. Rabbat
19
59
0
27 Feb 2020
On Biased Compression for Distributed Learning
Aleksandr Beznosikov
Samuel Horváth
Peter Richtárik
M. Safaryan
10
186
0
27 Feb 2020
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
29
135
0
26 Feb 2020
Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
Bao Wang
T. Nguyen
Andrea L. Bertozzi
Richard G. Baraniuk
Stanley J. Osher
ODL
4
48
0
24 Feb 2020
Periodic Q-Learning
Dong-hwan Lee
Niao He
OOD
9
13
0
23 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
40
17
0
11 Feb 2020
Federated Learning of a Mixture of Global and Local Models
Filip Hanzely
Peter Richtárik
FedML
8
379
0
10 Feb 2020
On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions
Yossi Arjevani
Amit Daniely
Stefanie Jegelka
Hongzhou Lin
24
2
0
09 Feb 2020
Variance Reduction with Sparse Gradients
Melih Elibol
Lihua Lei
Michael I. Jordan
6
23
0
27 Jan 2020
Accelerated Dual-Averaging Primal-Dual Method for Composite Convex Minimization
Conghui Tan
Yuqiu Qian
Shiqian Ma
Tong Zhang
20
5
0
15 Jan 2020
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedML
AAML
32
181
0
29 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Support Vector Machine Classifier via
L
0
/
1
L_{0/1}
L
0/1
Soft-Margin Loss
Huajun Wang
Yuanhai Shao
Shenglong Zhou
Ce Zhang
N. Xiu
VLM
26
51
0
16 Dec 2019
Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates
D. Kovalev
Konstantin Mishchenko
Peter Richtárik
ODL
18
45
0
03 Dec 2019
Efficient Relaxed Gradient Support Pursuit for Sparsity Constrained Non-convex Optimization
Fanhua Shang
Bingkun Wei
Hongying Liu
Yuanyuan Liu
Jiacheng Zhuo
13
1
0
02 Dec 2019
Exponential Convergence Rates of Classification Errors on Learning with SGD and Random Features
Shingo Yashima
Atsushi Nitanda
Taiji Suzuki
14
2
0
13 Nov 2019
Katyusha Acceleration for Convex Finite-Sum Compositional Optimization
Yibo Xu
Yangyang Xu
74
13
0
24 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
17
36
0
21 Oct 2019
Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG
Yujia Jin
Aaron Sidford
15
7
0
15 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
27
5
0
26 Sep 2019
A Stochastic Proximal Point Algorithm for Saddle-Point Problems
Luo Luo
Cheng Chen
Yujun Li
Guangzeng Xie
Zhihua Zhang
16
16
0
13 Sep 2019
Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction
Boyue Li
Shicong Cen
Yuxin Chen
Yuejie Chi
22
12
0
12 Sep 2019
Decentralized Stochastic Gradient Tracking for Non-convex Empirical Risk Minimization
Jiaqi Zhang
Keyou You
9
18
0
06 Sep 2019
A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization
Guangzeng Xie
Luo Luo
Zhihua Zhang
14
4
0
22 Aug 2019
Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
Hao Jin
Dachao Lin
Zhihua Zhang
ODL
18
2
0
18 Aug 2019
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin
Selvaprabu Nadarajah
Negar Soheili
Tianbao Yang
27
13
0
07 Aug 2019
Towards closing the gap between the theory and practice of SVRG
Othmane Sebbouh
Nidham Gazagnadou
Samy Jelassi
Francis R. Bach
Robert Mansel Gower
19
17
0
31 Jul 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
54
723
0
19 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
13
63
0
03 Jul 2019
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
8
35
0
03 Jul 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
16
30
0
02 Jul 2019
Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond
Oliver Hinder
Aaron Sidford
N. Sohoni
19
70
0
27 Jun 2019
Submodular Batch Selection for Training Deep Neural Networks
K. J. Joseph
R. VamshiTeja
Krishnakant Singh
V. Balasubramanian
13
23
0
20 Jun 2019
A Generic Acceleration Framework for Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
27
43
0
03 Jun 2019
Unified Acceleration of High-Order Algorithms under Hölder Continuity and Uniform Convexity
Chaobing Song
Yong Jiang
Yi Ma
137
19
0
03 Jun 2019
On the computational complexity of the probabilistic label tree algorithms
R. Busa-Fekete
Krzysztof Dembczyñski
Alexander Golovnev
Kalina Jasinska
Mikhail Kuznetsov
M. Sviridenko
Chao Xu
TPM
29
3
0
01 Jun 2019
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data
Shicong Cen
Huishuai Zhang
Yuejie Chi
Wei-neng Chen
Tie-Yan Liu
FedML
14
27
0
29 May 2019
A unified variance-reduced accelerated gradient method for convex optimization
Guanghui Lan
Zhize Li
Yi Zhou
14
61
0
29 May 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Jiaming Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
23
26
0
27 May 2019
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
24
31
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
34
205
0
24 May 2019
Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
Dzung Phan
Lam M. Nguyen
33
54
0
15 May 2019
Solving Empirical Risk Minimization in the Current Matrix Multiplication Time
Y. Lee
Zhao Song
Qiuyi Zhang
19
115
0
11 May 2019
Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
13
27
0
07 May 2019
Dynamic Mini-batch SGD for Elastic Distributed Training: Learning in the Limbo of Resources
Yanghua Peng
Hang Zhang
Yifei Ma
Tong He
Zhi-Li Zhang
Sheng Zha
Mu Li
28
23
0
26 Apr 2019
Previous
1
2
3
4
5
6
Next