We propose a remarkably general variance-reduced method suitable for solving regularized empirical risk minimization problems with either a large number of training examples, or a large model dimension, or both. In special cases, our method reduces to several known and previously thought to be unrelated methods, such as {\tt SAGA}, {\tt LSVRG}, {\tt JacSketch}, {\tt SEGA} and {\tt ISEGA}, and their arbitrary sampling and proximal generalizations. However, we also highlight a large number of new specific algorithms with interesting properties. We provide a single theorem establishing linear convergence of the method under smoothness and quasi strong convexity assumptions. With this theorem we recover best-known and sometimes improved rates for known methods arising in special cases. As a by-product, we provide the first unified method and theory for stochastic gradient and stochastic coordinate descent type methods.
View on arXiv