Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.05953
Cited By
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
18 March 2016
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Katyusha: The First Direct Acceleration of Stochastic Gradient Methods"
50 / 297 papers shown
Title
HOME-3: High-Order Momentum Estimator with Third-Power Gradient for Convex and Smooth Nonconvex Optimization
Wei Zhang
Arif Hassan Zidan
Afrar Jahin
Wei Zhang
Tianming Liu
ODL
7
0
0
16 May 2025
Permutation Randomization on Nonsmooth Nonconvex Optimization: A Theoretical and Experimental Study
Wei Zhang
Arif Hassan Zidan
Afrar Jahin
Wei Zhang
Tianming Liu
7
0
0
16 May 2025
Adaptive Diffusion Policy Optimization for Robotic Manipulation
Huiyun Jiang
Zhuang Yang
34
0
0
13 May 2025
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
42
0
0
13 May 2025
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
37
0
0
12 May 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
56
0
0
11 Mar 2025
Quantum Non-Linear Bandit Optimization
Zakaria Shams Siam
Chaowen Guan
Chong Liu
34
0
0
04 Mar 2025
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
107
0
0
21 Feb 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
Accelerated Methods with Compressed Communications for Distributed Optimization Problems under Data Similarity
Dmitry Bylinkin
Aleksandr Beznosikov
76
1
0
21 Dec 2024
On the SAGA algorithm with decreasing step
Luis Fredes
Bernard Bercu
Eméric Gbaguidi
29
1
0
02 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
29
0
0
02 Oct 2024
Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning
Dmitry Bylinkin
Kirill Degtyarev
Aleksandr Beznosikov
FedML
34
0
0
22 Sep 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
Efficient Continual Finite-Sum Minimization
Ioannis Mavrothalassitis
Stratis Skoulakis
L. Dadi
V. Cevher
40
0
0
07 Jun 2024
Quantum Algorithms and Lower Bounds for Finite-Sum Optimization
Yexin Zhang
Chenyi Zhang
Cong Fang
Liwei Wang
Tongyang Li
48
2
0
05 Jun 2024
Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit
Jason D. Lee
Kazusato Oko
Taiji Suzuki
Denny Wu
MLT
87
21
0
03 Jun 2024
Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity
Qihao Zhou
Haishan Ye
Luo Luo
26
0
0
25 May 2024
Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems
Michal Dereziñski
Daniel LeJeune
Deanna Needell
E. Rebrova
42
4
0
09 May 2024
Fast Stochastic Policy Gradient: Negative Momentum for Reinforcement Learning
Haobin Zhang
Zhuang Yang
40
0
0
08 May 2024
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Improving the Bit Complexity of Communication for Distributed Convex Optimization
Mehrdad Ghadiri
Yin Tat Lee
Swati Padmanabhan
W. Swartworth
David P. Woodruff
Guanghao Ye
35
5
0
28 Mar 2024
A Novel Loss Function-based Support Vector Machine for Binary Classification
Yan Li
Liping Zhang
22
0
0
25 Mar 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
56
2
0
11 Mar 2024
On the Complexity of Finite-Sum Smooth Optimization under the Polyak-Łojasiewicz Condition
Yunyan Bai
Yuxing Liu
Luo Luo
26
0
0
04 Feb 2024
FedCore: Straggler-Free Federated Learning with Distributed Coresets
Hongpeng Guo
Haotian Gu
Xiaoyang Wang
Bo Chen
Eun Kyung Lee
Tamar Eilam
Deming Chen
Klara Nahrstedt
FedML
32
1
0
31 Jan 2024
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
47
4
0
10 Jan 2024
From Optimization to Control: Quasi Policy Iteration
Mohammad Amin Sharifi Kolarijani
Peyman Mohajerin Esfahani
32
2
0
18 Nov 2023
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
38
1
0
09 Nov 2023
An Automatic Learning Rate Schedule Algorithm for Achieving Faster Convergence and Steeper Descent
Zhao Song
Chiwun Yang
36
9
0
17 Oct 2023
Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions
Xu Cai
Ahmet Alacaoglu
Jelena Diakonikolas
49
7
0
04 Oct 2023
Ordering for Non-Replacement SGD
Yuetong Xu
Baharan Mirzasoleiman
23
0
0
28 Jun 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
33
8
0
26 Jun 2023
Understanding Generalization of Federated Learning via Stability: Heterogeneity Matters
Zhenyu Sun
Xiaochun Niu
Ermin Wei
FedML
MLT
33
21
0
06 Jun 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
27
5
0
23 Apr 2023
Accelerated Doubly Stochastic Gradient Algorithm for Large-scale Empirical Risk Minimization
Zebang Shen
Hui Qian
Tongzhou Mu
Chao Zhang
ODL
14
0
0
23 Apr 2023
Understanding Accelerated Gradient Methods: Lyapunov Analyses and Hamiltonian Assisted Interpretations
Penghui Fu
Zhiqiang Tan
8
0
0
20 Apr 2023
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
25
11
0
15 Apr 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
30
2
0
29 Mar 2023
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Cheuk Yin Lin
Chaobing Song
Jelena Diakonikolas
27
5
0
28 Mar 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
34
12
0
14 Feb 2023
Improved Rate of First Order Algorithms for Entropic Optimal Transport
Yiling Luo
Yiling Xie
X. Huo
19
8
0
23 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
36
2
0
09 Jan 2023
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
Statistical and Computational Guarantees for Influence Diagnostics
Jillian R. Fisher
Lang Liu
Krishna Pillutla
Y. Choi
Zaïd Harchaoui
TDI
29
0
0
08 Dec 2022
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
20
9
0
26 Nov 2022
SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates
Zachary Frangella
Pratik Rathore
Shipu Zhao
Madeleine Udell
13
5
0
16 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
27
15
0
03 Nov 2022
1
2
3
4
5
6
Next