Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.05953
Cited By
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
18 March 2016
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Katyusha: The First Direct Acceleration of Stochastic Gradient Methods"
50 / 297 papers shown
Title
Flatter, faster: scaling momentum for optimal speedup of SGD
Aditya Cowsik
T. Can
Paolo Glorioso
62
5
0
28 Oct 2022
Faster federated optimization under second-order similarity
Ahmed Khaled
Chi Jin
FedML
56
18
0
06 Sep 2022
Simple and Optimal Stochastic Gradient Methods for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
43
6
0
22 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
41
7
0
10 Aug 2022
Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
Sally Dong
Haotian Jiang
Y. Lee
Swati Padmanabhan
Guanghao Ye
33
2
0
07 Aug 2022
SGEM: stochastic gradient with energy and momentum
Hailiang Liu
Xuping Tian
22
4
0
03 Aug 2022
Stochastic Primal-Dual Three Operator Splitting Algorithm with Extension to Equivariant Regularization-by-Denoising
Junqi Tang
Matthias Joachim Ehrhardt
Carola-Bibiane Schönlieb
36
0
0
02 Aug 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
60
11
0
17 Jun 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
39
17
0
15 Jun 2022
A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games
Samuel Sokota
Ryan DÓrazio
J. Zico Kolter
Nicolas Loizou
Marc Lanctot
Ioannis Mitliagkas
Noam Brown
Christian Kroer
36
1
0
12 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
40
16
0
07 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
6
0
06 Jun 2022
Trajectory of Mini-Batch Momentum: Batch Size Saturation and Convergence in High Dimensions
Kiwon Lee
Andrew N. Cheng
Courtney Paquette
Elliot Paquette
24
12
0
02 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
19
0
0
01 Jun 2022
Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization
Liang Zhang
K. K. Thekumparampil
Sewoong Oh
Niao He
49
17
0
01 Jun 2022
SADAM: Stochastic Adam, A Stochastic Operator for First-Order Gradient-based Optimizer
Wei Zhang
Yun-Jian Bao
ODL
33
2
0
20 May 2022
How catastrophic can catastrophic forgetting be in linear regression?
Itay Evron
E. Moroshko
Rachel A. Ward
Nati Srebro
Daniel Soudry
CLL
35
48
0
19 May 2022
Implicit Regularization Properties of Variance Reduced Stochastic Mirror Descent
Yiling Luo
X. Huo
Y. Mei
23
1
0
29 Apr 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
40
1
0
28 Apr 2022
Distributionally Robust Optimization via Ball Oracle Acceleration
Y. Carmon
Danielle Hausler
20
12
0
24 Mar 2022
An Adaptive Gradient Method with Energy and Momentum
Hailiang Liu
Xuping Tian
ODL
21
9
0
23 Mar 2022
Provable Constrained Stochastic Convex Optimization with XOR-Projected Gradient Descent
Fan Ding
Yijie Wang
Jianzhu Ma
Yexiang Xue
25
0
0
22 Mar 2022
Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions
Xu Cai
Chaobing Song
Cristóbal Guzmán
Jelena Diakonikolas
48
9
0
17 Mar 2022
Accelerated SGD for Non-Strongly-Convex Least Squares
Aditya Varre
Nicolas Flammarion
26
7
0
03 Mar 2022
An Accelerated Stochastic Algorithm for Solving the Optimal Transport Problem
Yiling Xie
Yiling Luo
X. Huo
29
10
0
02 Mar 2022
Data-Consistent Local Superresolution for Medical Imaging
Junqi Tang
SupR
33
0
0
22 Feb 2022
Equivariance Regularization for Image Reconstruction
Junqi Tang
32
2
0
10 Feb 2022
Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods
Yujia Jin
Aaron Sidford
Kevin Tian
21
30
0
09 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
27
7
0
01 Feb 2022
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation
Matilde Gargiani
Andrea Zanelli
Andrea Martinelli
Tyler H. Summers
John Lygeros
33
14
0
01 Feb 2022
L-SVRG and L-Katyusha with Adaptive Sampling
Boxin Zhao
Boxiang Lyu
Mladen Kolar
26
3
0
31 Jan 2022
Adaptive Accelerated (Extra-)Gradient Methods with Variance Reduction
Zijian Liu
Ta Duy Nguyen
Alina Ene
Huy Le Nguyen
30
6
0
28 Jan 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
23
12
0
19 Jan 2022
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao
Lingxiao Wang
Mladen Kolar
Ziqi Liu
Qing Cui
Jun Zhou
Chaochao Chen
FedML
39
10
0
28 Dec 2021
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
31
7
0
26 Nov 2021
Coordinate Linear Variance Reduction for Generalized Linear Programming
Chaobing Song
Cheuk Yin Lin
Stephen J. Wright
Jelena Diakonikolas
32
12
0
02 Nov 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Training Deep Neural Networks with Adaptive Momentum Inspired by the Quadratic Optimization
Tao Sun
Huaming Ling
Zuoqiang Shi
Dongsheng Li
Bao Wang
ODL
27
13
0
18 Oct 2021
Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Aleksandr Beznosikov
Peter Richtárik
Michael Diskin
Max Ryabinin
Alexander Gasnikov
FedML
25
21
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
51
46
0
07 Oct 2021
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
27
1
0
30 Sep 2021
Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees
Hamid Reza Feyzmahdavian
M. Johansson
32
20
0
09 Sep 2021
FedPAGE: A Fast Local Stochastic Gradient Method for Communication-Efficient Federated Learning
Haoyu Zhao
Zhize Li
Peter Richtárik
FedML
30
29
0
10 Aug 2021
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
27
4
0
24 Jul 2021
CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression
Zhize Li
Peter Richtárik
33
29
0
20 Jul 2021
Robust Regression Revisited: Acceleration and Improved Estimation Rates
A. Jambulapati
Jingkai Li
T. Schramm
Kevin Tian
AAML
32
17
0
22 Jun 2021
Kernel Clustering with Sigmoid-based Regularization for Efficient Segmentation of Sequential Data
Tung Doan
Atsuhiro Takasu
43
1
0
22 Jun 2021
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
31
29
0
17 Jun 2021
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach
Qiujiang Jin
Aryan Mokhtari
16
4
0
10 Jun 2021
Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models
Courtney Paquette
Elliot Paquette
ODL
32
13
0
07 Jun 2021
Previous
1
2
3
4
5
6
Next