ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.05953
  4. Cited By
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
v1v2v3v4v5v6 (latest)

Katyusha: The First Direct Acceleration of Stochastic Gradient Methods

18 March 2016
Zeyuan Allen-Zhu
    ODL
ArXiv (abs)PDFHTML

Papers citing "Katyusha: The First Direct Acceleration of Stochastic Gradient Methods"

50 / 192 papers shown
Title
Stochastic Bias-Reduced Gradient Methods
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
76
30
0
17 Jun 2021
Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models
Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models
Courtney Paquette
Elliot Paquette
ODL
102
14
0
07 Jun 2021
Practical Schemes for Finding Near-Stationary Points of Convex
  Finite-Sums
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums
Kaiwen Zhou
Lai Tian
Anthony Man-Cho So
James Cheng
74
10
0
25 May 2021
Adaptive Newton Sketch: Linear-time Optimization with Quadratic
  Convergence and Effective Hessian Dimensionality
Adaptive Newton Sketch: Linear-time Optimization with Quadratic Convergence and Effective Hessian Dimensionality
Jonathan Lacotte
Yifei Wang
Mert Pilanci
67
17
0
15 May 2021
Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss
Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
71
20
0
04 May 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
117
14
0
21 Mar 2021
Variance Reduction via Primal-Dual Accelerated Dual Averaging for
  Nonsmooth Convex Finite-Sums
Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
142
17
0
26 Feb 2021
Machine Unlearning via Algorithmic Stability
Machine Unlearning via Algorithmic Stability
Enayat Ullah
Tung Mai
Anup B. Rao
Ryan Rossi
R. Arora
107
111
0
25 Feb 2021
Learning with User-Level Privacy
Learning with User-Level Privacy
Daniel Levy
Ziteng Sun
Kareem Amin
Satyen Kale
Alex Kulesza
M. Mohri
A. Suresh
FedML
130
91
0
23 Feb 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
61
18
0
18 Feb 2021
Stochastic Variance Reduction for Variational Inequality Methods
Stochastic Variance Reduction for Variational Inequality Methods
Ahmet Alacaoglu
Yura Malitsky
105
71
0
16 Feb 2021
Smoothness Matrices Beat Smoothness Constants: Better Communication
  Compression Techniques for Distributed Optimization
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
M. Safaryan
Filip Hanzely
Peter Richtárik
50
24
0
14 Feb 2021
Complementary Composite Minimization, Small Gradients in General Norms,
  and Applications
Complementary Composite Minimization, Small Gradients in General Norms, and Applications
Jelena Diakonikolas
Cristóbal Guzmán
46
14
0
26 Jan 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
94
26
0
04 Jan 2021
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
David Martínez-Rubio
141
20
0
07 Dec 2020
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for
  Acceleration
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration
Michael B. Cohen
Aaron Sidford
Kevin Tian
81
41
0
12 Nov 2020
AEGD: Adaptive Gradient Descent with Energy
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
64
11
0
10 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
107
73
0
07 Oct 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
137
190
0
05 Oct 2020
Variance-Reduced Methods for Machine Learning
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
120
117
0
02 Oct 2020
Cross Learning in Deep Q-Networks
Cross Learning in Deep Q-Networks
Xing Wang
A. Vinel
27
2
0
29 Sep 2020
Effective Proximal Methods for Non-convex Non-smooth Regularized
  Learning
Effective Proximal Methods for Non-convex Non-smooth Regularized Learning
Guannan Liang
Qianqian Tong
Jiahao Ding
Miao Pan
J. Bi
71
0
0
14 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
87
0
0
26 Aug 2020
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for
  Nonconvex Optimization
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
121
130
0
25 Aug 2020
An Accelerated DFO Algorithm for Finite-sum Convex Functions
An Accelerated DFO Algorithm for Finite-sum Convex Functions
Yuwen Chen
Antonio Orvieto
Aurelien Lucchi
89
15
0
07 Jul 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum
  Optimization
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi-An Ma
171
23
0
18 Jun 2020
Nearly Linear Row Sampling Algorithm for Quantile Regression
Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li
Ruosong Wang
Lin F. Yang
Hanrui Zhang
59
7
0
15 Jun 2020
A Unified Analysis of Stochastic Gradient Methods for Nonconvex
  Federated Optimization
A Unified Analysis of Stochastic Gradient Methods for Nonconvex Federated Optimization
Zhize Li
Peter Richtárik
FedML
101
36
0
12 Jun 2020
Beyond Worst-Case Analysis in Stochastic Approximation: Moment
  Estimation Improves Instance Complexity
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
J.N. Zhang
Hongzhou Lin
Subhro Das
S. Sra
Ali Jadbabaie
46
1
0
08 Jun 2020
Improved SVRG for quadratic functions
Improved SVRG for quadratic functions
N. Kahalé
55
0
0
01 Jun 2020
An Optimal Algorithm for Decentralized Finite Sum Optimization
An Optimal Algorithm for Decentralized Finite Sum Optimization
Aymeric Dieuleveut
Francis R. Bach
Laurent Massoulie
73
45
0
20 May 2020
Momentum with Variance Reduction for Nonconvex Composition Optimization
Momentum with Variance Reduction for Nonconvex Composition Optimization
Ziyi Chen
Yi Zhou
ODL
75
3
0
15 May 2020
Spike-Triggered Descent
Spike-Triggered Descent
Michael Kummer
Arunava Banerjee
20
0
0
12 May 2020
Flexible numerical optimization with ensmallen
Flexible numerical optimization with ensmallen
Ryan R. Curtin
Marcus Edel
Rahul Prabhu
S. Basak
Zhihao Lou
Conrad Sanderson
86
1
0
09 Mar 2020
On the Convergence of Nesterov's Accelerated Gradient Method in
  Stochastic Settings
On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings
Mahmoud Assran
Michael G. Rabbat
80
59
0
27 Feb 2020
On Biased Compression for Distributed Learning
On Biased Compression for Distributed Learning
Aleksandr Beznosikov
Samuel Horváth
Peter Richtárik
M. Safaryan
111
189
0
27 Feb 2020
Acceleration for Compressed Gradient Descent in Distributed and
  Federated Optimization
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedMLAI4CE
129
137
0
26 Feb 2020
Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent
Bao Wang
T. Nguyen
Andrea L. Bertozzi
Richard G. Baraniuk
Stanley J. Osher
ODL
82
49
0
24 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
114
30
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
84
17
0
11 Feb 2020
Federated Learning of a Mixture of Global and Local Models
Federated Learning of a Mixture of Global and Local Models
Filip Hanzely
Peter Richtárik
FedML
103
388
0
10 Feb 2020
Variance Reduction with Sparse Gradients
Variance Reduction with Sparse Gradients
Melih Elibol
Lihua Lei
Michael I. Jordan
67
23
0
27 Jan 2020
Federated Variance-Reduced Stochastic Gradient Descent with Robustness
  to Byzantine Attacks
Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine Attacks
Zhaoxian Wu
Qing Ling
Tianyi Chen
G. Giannakis
FedMLAAML
123
186
0
29 Dec 2019
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
137
169
0
19 Dec 2019
Support Vector Machine Classifier via $L_{0/1}$ Soft-Margin Loss
Support Vector Machine Classifier via L0/1L_{0/1}L0/1​ Soft-Margin Loss
Huajun Wang
Yuanhai Shao
Shenglong Zhou
Ce Zhang
N. Xiu
VLM
68
52
0
16 Dec 2019
Stochastic Newton and Cubic Newton Methods with Simple Local
  Linear-Quadratic Rates
Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates
D. Kovalev
Konstantin Mishchenko
Peter Richtárik
ODL
80
45
0
03 Dec 2019
Katyusha Acceleration for Convex Finite-Sum Compositional Optimization
Katyusha Acceleration for Convex Finite-Sum Compositional Optimization
Yibo Xu
Yangyang Xu
128
13
0
24 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
79
32
0
22 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex
  Optimization
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
98
36
0
21 Oct 2019
A Stochastic Proximal Point Algorithm for Saddle-Point Problems
A Stochastic Proximal Point Algorithm for Saddle-Point Problems
Luo Luo
Cheng Chen
Yujun Li
Guangzeng Xie
Zhihua Zhang
146
16
0
13 Sep 2019
Previous
1234
Next