Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.05953
Cited By
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
18 March 2016
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Katyusha: The First Direct Acceleration of Stochastic Gradient Methods"
50 / 297 papers shown
Title
On Structured Filtering-Clustering: Global Error Bound and Optimal First-Order Algorithms
Nhat Ho
Tianyi Lin
Michael I. Jordan
33
2
0
16 Apr 2019
On the Adaptivity of Stochastic Gradient-Based Optimization
Lihua Lei
Michael I. Jordan
ODL
14
22
0
09 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
Noisy Accelerated Power Method for Eigenproblems with Applications
Vien V. Mai
M. Johansson
14
3
0
20 Mar 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
16
139
0
15 Feb 2019
The Complexity of Making the Gradient Small in Stochastic Convex Optimization
Dylan J. Foster
Ayush Sekhari
Ohad Shamir
Nathan Srebro
Karthik Sridharan
Blake E. Woodworth
14
51
0
13 Feb 2019
A Smoother Way to Train Structured Prediction Models
Krishna Pillutla
Vincent Roulet
Sham Kakade
Zaïd Harchaoui
19
19
0
08 Feb 2019
Momentum Schemes with Stochastic Variance Reduction for Nonconvex Composite Optimization
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
ODL
41
14
0
07 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
16
60
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
29
115
0
03 Feb 2019
Optimal mini-batch and step sizes for SAGA
Nidham Gazagnadou
Robert Mansel Gower
Joseph Salmon
27
34
0
31 Jan 2019
Lower Bounds for Smooth Nonconvex Finite-Sum Optimization
Dongruo Zhou
Quanquan Gu
21
45
0
31 Jan 2019
Asynchronous Accelerated Proximal Stochastic Gradient for Strongly Convex Distributed Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
FedML
16
26
0
28 Jan 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
32
44
0
25 Jan 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
36
155
0
24 Jan 2019
Curvature-Exploiting Acceleration of Elastic Net Computations
Vien V. Mai
M. Johansson
22
0
0
24 Jan 2019
Stochastic Trust Region Inexact Newton Method for Large-scale Machine Learning
Vinod Kumar Chauhan
A. Sharma
Kalpana Dahiya
12
6
0
26 Dec 2018
Stochastic Doubly Robust Gradient
Kanghoon Lee
Jihye Choi
Moonsu Cha
Jung Kwon Lee
Tae-Yoon Kim
13
0
0
21 Dec 2018
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning
Aaron Defazio
Léon Bottou
UQCV
DRL
23
112
0
11 Dec 2018
Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression
Neha Gupta
Aaron Sidford
11
12
0
27 Nov 2018
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
Jiaming Zhang
Hongyi Zhang
S. Sra
26
39
0
10 Nov 2018
Accelerating SGD with momentum for over-parameterized learning
Chaoyue Liu
M. Belkin
ODL
4
19
0
31 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
30
296
0
16 Oct 2018
Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma
Denis Yarats
ODL
84
129
0
16 Oct 2018
ASVRG: Accelerated Proximal SVRG
Fanhua Shang
L. Jiao
Kaiwen Zhou
James Cheng
Yan Ren
Yufei Jin
ODL
29
30
0
07 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
19
31
0
05 Oct 2018
Optimal Matrix Momentum Stochastic Approximation and Applications to Q-learning
Adithya M. Devraj
Ana Bušić
Sean P. Meyn
22
4
0
17 Sep 2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
Online Adaptive Methods, Universality and Acceleration
Kfir Y. Levy
A. Yurtsever
V. Cevher
ODL
28
89
0
08 Sep 2018
A Fast Anderson-Chebyshev Acceleration for Nonlinear Optimization
Zhize Li
Jian Li
18
19
0
07 Sep 2018
Stochastically Controlled Stochastic Gradient for the Convex and Non-convex Composition problem
L. Liu
Ji Liu
Cho-Jui Hsieh
Dacheng Tao
14
13
0
06 Sep 2018
Fast Variance Reduction Method with Stochastic Batch Size
Xuanqing Liu
Cho-Jui Hsieh
20
5
0
07 Aug 2018
Direct Acceleration of SAGA using Sampled Negative Momentum
Kaiwen Zhou
13
45
0
28 Jun 2018
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
Kaiwen Zhou
Fanhua Shang
James Cheng
19
74
0
28 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Laplacian Smoothing Gradient Descent
Stanley Osher
Bao Wang
Penghang Yin
Xiyang Luo
Farzin Barekat
Minh Pham
A. Lin
ODL
22
43
0
17 Jun 2018
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors
Atsushi Nitanda
Taiji Suzuki
24
10
0
14 Jun 2018
Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs
Bin Hu
S. Wright
Laurent Lessard
27
20
0
10 Jun 2018
Double Quantization for Communication-Efficient Distributed Optimization
Yue Yu
Jiaxiang Wu
Longbo Huang
MQ
19
57
0
25 May 2018
Stochastic Gradient Descent for Stochastic Doubly-Nonconvex Composite Optimization
Takayuki Kawashima
Hironori Fujisawa
14
2
0
21 May 2018
k-SVRG: Variance Reduction for Large Scale Optimization
Anant Raj
Sebastian U. Stich
10
6
0
02 May 2018
Stochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference
Zhize Li
Tianyi Zhang
Shuyu Cheng
Jun Yu Li
Jian Li
BDL
20
18
0
29 Mar 2018
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
35
371
0
17 Mar 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
32
117
0
15 Mar 2018
A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimization
Andre Milzarek
X. Xiao
Shicong Cen
Zaiwen Wen
M. Ulbrich
29
36
0
09 Mar 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
23
510
0
02 Mar 2018
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
L. Jiao
32
65
0
26 Feb 2018
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization
Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
K. K. Ng
Yuichi Yoshida
27
9
0
26 Feb 2018
Differentially Private Empirical Risk Minimization Revisited: Faster and More General
Di Wang
Minwei Ye
Jinhui Xu
19
268
0
14 Feb 2018
Previous
1
2
3
4
5
6
Next