Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,267 papers shown
Title
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
19
214
0
04 Apr 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
25
21
0
01 Apr 2019
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAtt
TDI
27
223
0
26 Mar 2019
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
22
17
0
21 Mar 2019
Natural Language Interaction with Explainable AI Models
Arjun Reddy Akula
S. Todorovic
J. Chai
Song-Chun Zhu
24
23
0
13 Mar 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
19
86
0
06 Mar 2019
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
14
18
0
05 Mar 2019
SAFE ML: Surrogate Assisted Feature Extraction for Model Learning
Alicja Gosiewska
A. Gacek
Piotr Lubon
P. Biecek
20
5
0
28 Feb 2019
Deep learning in bioinformatics: introduction, application, and perspective in big data era
Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
AI4CE
24
295
0
28 Feb 2019
Reliable Deep Grade Prediction with Uncertainty Estimation
Qian Hu
Huzefa Rangwala
18
39
0
26 Feb 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Saliency Learning: Teaching the Model Where to Pay Attention
Reza Ghaeini
Xiaoli Z. Fern
Hamed Shahbazi
Prasad Tadepalli
FAtt
XAI
29
30
0
22 Feb 2019
Regularizing Black-box Models for Improved Interpretability
Gregory Plumb
Maruan Al-Shedivat
Ángel Alexander Cabrera
Adam Perer
Eric Xing
Ameet Talwalkar
AAML
24
79
0
18 Feb 2019
Ask Not What AI Can Do, But What AI Should Do: Towards a Framework of Task Delegability
Brian Lubars
Chenhao Tan
22
73
0
08 Feb 2019
Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making
Carrie J. Cai
Emily Reif
Narayan Hegde
J. Hipp
Been Kim
...
Martin Wattenberg
F. Viégas
G. Corrado
Martin C. Stumpe
Michael Terry
43
397
0
08 Feb 2019
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
19
142
0
28 Jan 2019
Testing Conditional Independence in Supervised Learning Algorithms
David S. Watson
Marvin N. Wright
CML
29
52
0
28 Jan 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
39
449
0
27 Jan 2019
The autofeat Python Library for Automated Feature Engineering and Selection
F. Horn
R. Pack
M. Rieger
15
93
0
22 Jan 2019
Explainable Failure Predictions with RNN Classifiers based on Time Series Data
I. Giurgiu
Anika Schumann
AI4TS
11
8
0
20 Jan 2019
On Network Science and Mutual Information for Explaining Deep Neural Networks
Brian Davis
Umang Bhatt
Kartikeya Bhardwaj
R. Marculescu
J. M. F. Moura
FedML
SSL
FAtt
21
10
0
20 Jan 2019
Quantifying Interpretability and Trust in Machine Learning Systems
Philipp Schmidt
F. Biessmann
16
112
0
20 Jan 2019
Towards Aggregating Weighted Feature Attributions
Umang Bhatt
Pradeep Ravikumar
José M. F. Moura
FAtt
TDI
6
13
0
20 Jan 2019
Visual Entailment: A Novel Task for Fine-Grained Image Understanding
Ning Xie
Farley Lai
Derek Doran
Asim Kadav
CoGe
53
322
0
20 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
49
1,421
0
14 Jan 2019
Enhancing Explainability of Neural Networks through Architecture Constraints
Zebin Yang
Aijun Zhang
Agus Sudjianto
AAML
16
87
0
12 Jan 2019
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Upol Ehsan
Pradyumna Tambwekar
Larry Chan
Brent Harrison
Mark O. Riedl
19
237
0
11 Jan 2019
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
24
129
0
11 Jan 2019
Interpretable CNNs for Object Classification
Quanshi Zhang
Xin Eric Wang
Ying Nian Wu
Huilin Zhou
Song-Chun Zhu
15
54
0
08 Jan 2019
Ten ways to fool the masses with machine learning
F. Minhas
Amina Asif
Asa Ben-Hur
FedML
HAI
33
5
0
07 Jan 2019
Can You Trust This Prediction? Auditing Pointwise Reliability After Learning
Peter F. Schulam
Suchi Saria
OOD
27
103
0
02 Jan 2019
Efficient Search for Diverse Coherent Explanations
Chris Russell
17
234
0
02 Jan 2019
Natively Interpretable Machine Learning and Artificial Intelligence: Preliminary Results and Future Directions
Christopher J. Hazard
Christopher Fusting
Michael Resnick
Michael Auerbach
M. Meehan
Valeri Korobov
14
8
0
02 Jan 2019
Explaining Aggregates for Exploratory Analytics
Fotis Savva
Christos Anagnostopoulos
Peter Triantafillou
11
18
0
29 Dec 2018
A Multi-Objective Anytime Rule Mining System to Ease Iterative Feedback from Domain Experts
T. Baum
Steffen Herbold
K. Schneider
11
4
0
23 Dec 2018
Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution
Baptiste Broto
François Bachoc
M. Depecker
FAtt
19
52
0
21 Dec 2018
LEAFAGE: Example-based and Feature importance-based Explanationsfor Black-box ML models
Ajaya Adhikari
David Tax
R. Satta
M. Faeth
FAtt
25
11
0
21 Dec 2018
Mining Interpretable AOG Representations from Convolutional Networks via Active Question Answering
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
10
14
0
18 Dec 2018
Explaining Neural Networks Semantically and Quantitatively
Runjin Chen
Hao Chen
Ge Huang
Jie Ren
Quanshi Zhang
FAtt
23
54
0
18 Dec 2018
Interactive Naming for Explaining Deep Neural Networks: A Formative Study
M. Hamidi-Haines
Zhongang Qi
Alan Fern
Fuxin Li
Prasad Tadepalli
FAtt
HAI
19
11
0
18 Dec 2018
Not Using the Car to See the Sidewalk: Quantifying and Controlling the Effects of Context in Classification and Segmentation
Rakshith Shetty
Bernt Schiele
Mario Fritz
29
83
0
17 Dec 2018
Can I trust you more? Model-Agnostic Hierarchical Explanations
Michael Tsang
Youbang Sun
Dongxu Ren
Yan Liu
FAtt
16
25
0
12 Dec 2018
Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images
Danilo Barros Mendes
Nilton Correia da Silva
MedIm
22
46
0
06 Dec 2018
Understanding Individual Decisions of CNNs via Contrastive Backpropagation
Jindong Gu
Yinchong Yang
Volker Tresp
FAtt
17
94
0
05 Dec 2018
e-SNLI: Natural Language Inference with Natural Language Explanations
Oana-Maria Camburu
Tim Rocktaschel
Thomas Lukasiewicz
Phil Blunsom
LRM
287
623
0
04 Dec 2018
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
30
169
0
03 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
31
102
0
28 Nov 2018
A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration
M. Cavallo
Çağatay Demiralp
11
55
0
28 Nov 2018
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
20
219
0
26 Nov 2018
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
19
0
0
21 Nov 2018
Previous
1
2
3
...
81
82
83
84
85
86
Next