Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,267 papers shown
Title
Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees
Guiliang Liu
Oliver Schulte
Wang Zhu
Qingcan Li
AI4CE
17
134
0
16 Jul 2018
A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees
Min Wu
Matthew Wicker
Wenjie Ruan
Xiaowei Huang
Marta Kwiatkowska
AAML
19
111
0
10 Jul 2018
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
14
196
0
09 Jul 2018
Women also Snowboard: Overcoming Bias in Captioning Models (Extended Abstract)
Lisa Anne Hendricks
Kaylee Burns
Kate Saenko
Trevor Darrell
Anna Rohrbach
39
477
0
02 Jul 2018
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
27
1
0
27 Jun 2018
Open the Black Box Data-Driven Explanation of Black Box Decision Systems
D. Pedreschi
F. Giannotti
Riccardo Guidotti
A. Monreale
Luca Pappalardo
Salvatore Ruggieri
Franco Turini
19
38
0
26 Jun 2018
xGEMs: Generating Examplars to Explain Black-Box Models
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
25
40
0
22 Jun 2018
Learning Qualitatively Diverse and Interpretable Rules for Classification
A. Ross
Weiwei Pan
Finale Doshi-Velez
16
13
0
22 Jun 2018
Interpretable Discovery in Large Image Data Sets
K. Wagstaff
Jake H. Lee
22
9
0
21 Jun 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
30
522
0
21 Jun 2018
Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach
A. C. Gusmão
Alvaro H. C. Correia
Glauber De Bona
Fabio Gagliardi Cozman
27
22
0
20 Jun 2018
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
29
164
0
20 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
56
933
0
20 Jun 2018
DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks
Mostafa Karimi
Di Wu
Zhangyang Wang
Yang Shen
35
358
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
21
82
0
19 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
76
1,153
0
19 Jun 2018
Instance-Level Explanations for Fraud Detection: A Case Study
Dennis Collaris
L. M. Vink
J. V. Wijk
31
31
0
19 Jun 2018
Biased Embeddings from Wild Data: Measuring, Understanding and Removing
Adam Sutton
Thomas Lansdall-Welfare
N. Cristianini
26
23
0
16 Jun 2018
Right for the Right Reason: Training Agnostic Networks
Sen Jia
Thomas Lansdall-Welfare
N. Cristianini
FaML
17
26
0
16 Jun 2018
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
31
145
0
14 Jun 2018
Understanding Patch-Based Learning by Explaining Predictions
Christopher J. Anders
G. Montavon
Wojciech Samek
K. Müller
UQCV
FAtt
33
6
0
11 Jun 2018
Assessing the impact of machine intelligence on human behaviour: an interdisciplinary endeavour
Emilia Gómez
Carlos Castillo
V. Charisi
V. Dahl
G. Deco
...
Núria Sebastián
Xavier Serra
Joan Serrà
Songül Tolan
Karina Vold
11
11
0
07 Jun 2018
Performance Metric Elicitation from Pairwise Classifier Comparisons
G. Hiranandani
Shant Boodaghians
R. Mehta
Oluwasanmi Koyejo
19
14
0
05 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,842
0
31 May 2018
Human-in-the-Loop Interpretability Prior
Isaac Lage
A. Ross
Been Kim
S. Gershman
Finale Doshi-Velez
32
120
0
29 May 2018
Lightly-supervised Representation Learning with Global Interpretability
M. A. Valenzuela-Escarcega
Ajay Nagesh
Mihai Surdeanu
SSL
17
23
0
29 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
31
435
0
28 May 2018
RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records
Bum Chul Kwon
Min-Je Choi
J. Kim
Edward Choi
Young Bin Kim
Soonwook Kwon
Jimeng Sun
Jaegul Choo
36
251
0
28 May 2018
"Why Should I Trust Interactive Learners?" Explaining Interactive Queries of Classifiers to Users
Stefano Teso
Kristian Kersting
FAtt
HAI
25
12
0
22 May 2018
Defoiling Foiled Image Captions
Pranava Madhyastha
Josiah Wang
Lucia Specia
27
9
0
16 May 2018
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
42
96
0
16 May 2018
SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines
Roy Schwartz
Sam Thomson
Noah A. Smith
30
24
0
15 May 2018
Did the Model Understand the Question?
Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
ELM
OOD
FAtt
27
196
0
14 May 2018
Behavior Analysis of NLI Models: Uncovering the Influence of Three Factors on Robustness
V. Carmona
Jeff Mitchell
Sebastian Riedel
27
44
0
11 May 2018
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
13
237
0
09 May 2018
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang
Xu Chen
XAI
LRM
52
866
0
30 Apr 2018
Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models
Hendrik Strobelt
Sebastian Gehrmann
M. Behrisch
Adam Perer
Hanspeter Pfister
Alexander M. Rush
VLM
HAI
31
239
0
25 Apr 2018
Understanding Community Structure in Layered Neural Networks
C. Watanabe
Kaoru Hiramatsu
K. Kashino
13
22
0
13 Apr 2018
Visual Analytics for Explainable Deep Learning
Jaegul Choo
Shixia Liu
HAI
XAI
14
235
0
07 Apr 2018
Enslaving the Algorithm: From a "Right to an Explanation" to a "Right to Better Decisions"?
L. Edwards
Michael Veale
FaML
AILaw
20
134
0
20 Mar 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
17
217
0
20 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
13
503
0
13 Mar 2018
Explaining Black-box Android Malware Detection
Marco Melis
Davide Maiorca
Battista Biggio
Giorgio Giacinto
Fabio Roli
AAML
FAtt
9
43
0
09 Mar 2018
The Challenge of Crafting Intelligible Intelligence
Daniel S. Weld
Gagan Bansal
26
241
0
09 Mar 2018
Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer's Disease Classification
Chengliang Yang
Anand Rangarajan
Sanjay Ranka
FAtt
21
140
0
07 Mar 2018
Explain Yourself: A Natural Language Interface for Scrutable Autonomous Robots
Javier Chiyah-Garcia
D. A. Robb
Xingkun Liu
A. Laskov
P. Patrón
H. Hastie
24
25
0
06 Mar 2018
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
44
561
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
27
63
0
21 Feb 2018
Teaching Categories to Human Learners with Visual Explanations
Oisin Mac Aodha
Shihan Su
Yuxin Chen
Pietro Perona
Yisong Yue
21
70
0
20 Feb 2018
Explainable Prediction of Medical Codes from Clinical Text
J. Mullenbach
Sarah Wiegreffe
J. Duke
Jimeng Sun
Jacob Eisenstein
FAtt
29
567
0
15 Feb 2018
Previous
1
2
3
...
83
84
85
86
Next