Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,307 papers shown
Title
Counterfactual States for Atari Agents via Generative Deep Learning
Matthew Lyle Olson
Lawrence Neal
Fuxin Li
Weng-Keen Wong
CML
21
29
0
27 Sep 2019
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging
Luke Oakden-Rayner
Jared A. Dunnmon
G. Carneiro
Christopher Ré
OOD
38
373
0
27 Sep 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
19
3
0
27 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
437
0
26 Sep 2019
Interpretable Models for Understanding Immersive Simulations
Nicholas Hoernle
Yaákov Gal
Barbara J. Grosz
Leilah Lyons
Ada Ren
Andee Rubin
24
4
0
24 Sep 2019
Deep Convolutions for In-Depth Automated Rock Typing
E. E. Baraboshkin
L. Ismailova
D. Orlov
E. Zhukovskaya
G. Kalmykov
O. V. Khotylev
E. Baraboshkin
D. Koroteev
33
84
0
23 Sep 2019
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
11
365
0
20 Sep 2019
AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models
Eric Wallace
Jens Tuyls
Junlin Wang
Sanjay Subramanian
Matt Gardner
Sameer Singh
MILM
28
137
0
19 Sep 2019
Representation Learning for Electronic Health Records
W. Weng
Peter Szolovits
36
19
0
19 Sep 2019
Slices of Attention in Asynchronous Video Job Interviews
Léo Hemamou
G. Felhi
Jean-Claude Martin
Chloé Clavel
13
20
0
19 Sep 2019
Large-scale representation learning from visually grounded untranscribed speech
Gabriel Ilharco
Yuan Zhang
Jason Baldridge
SSL
27
60
0
19 Sep 2019
Semantically Interpretable Activation Maps: what-where-how explanations within CNNs
Diego Marcos
Sylvain Lobry
D. Tuia
FAtt
MILM
25
26
0
18 Sep 2019
X-ToM: Explaining with Theory-of-Mind for Gaining Justified Human Trust
Arjun Reddy Akula
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
24
18
0
15 Sep 2019
Towards Safe Machine Learning for CPS: Infer Uncertainty from Training Data
Xiaozhe Gu
Arvind Easwaran
13
29
0
11 Sep 2019
Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Images: A Survey
Jérôme Rony
Soufiane Belharbi
Jose Dolz
Ismail Ben Ayed
Luke McCaffrey
Eric Granger
34
70
0
08 Sep 2019
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
Theo Jaunet
Romain Vuillemot
Christian Wolf
HAI
18
36
0
06 Sep 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
32
54
0
24 Aug 2019
TabNet: Attentive Interpretable Tabular Learning
Sercan Ö. Arik
Tomas Pfister
LMTD
55
1,293
0
20 Aug 2019
Visualizing Image Content to Explain Novel Image Discovery
Jake H. Lee
K. Wagstaff
27
3
0
14 Aug 2019
Regional Tree Regularization for Interpretability in Black Box Models
Mike Wu
S. Parbhoo
M. C. Hughes
R. Kindle
Leo Anthony Celi
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
15
37
0
13 Aug 2019
LoRMIkA: Local rule-based model interpretability with k-optimal associations
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
Wray Buntine
35
31
0
11 Aug 2019
Advocacy Learning: Learning through Competition and Class-Conditional Representations
Ian Fox
Jenna Wiens
SSL
25
2
0
07 Aug 2019
NeuroMask: Explaining Predictions of Deep Neural Networks through Mask Learning
M. Alzantot
Amy Widdicombe
S. Julier
Mani B. Srivastava
AAML
FAtt
26
3
0
05 Aug 2019
Smooth Grad-CAM++: An Enhanced Inference Level Visualization Technique for Deep Convolutional Neural Network Models
Daniel Omeiza
Skyler Speakman
C. Cintas
Komminist Weldemariam
FAtt
22
216
0
03 Aug 2019
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
38
378
0
31 Jul 2019
LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri
Feng Ruan
L. Abraham
Robert Tibshirani
41
122
0
29 Jul 2019
Visual Interaction with Deep Learning Models through Collaborative Semantic Inference
Sebastian Gehrmann
Hendrik Strobelt
Robert Krüger
Hanspeter Pfister
Alexander M. Rush
HAI
21
57
0
24 Jul 2019
Interpretable and Steerable Sequence Learning via Prototypes
Yao Ming
Panpan Xu
Huamin Qu
Liu Ren
AI4TS
12
138
0
23 Jul 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
32
67
0
16 Jul 2019
Technical Report: Partial Dependence through Stratification
T. Parr
James D. Wilson
11
2
0
15 Jul 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
24
68
0
15 Jul 2019
Metamorphic Testing of a Deep Learning based Forecaster
Anurag Dwarakanath
Manish Ahuja
Sanjay Podder
Silja Vinu
Arijit Naskar
M. Koushik
AI4TS
16
9
0
13 Jul 2019
A Systematic Mapping Study on Testing of Machine Learning Programs
S. Sherin
Muhammad Uzair Khan
Muhammad Zohaib Z. Iqbal
30
13
0
11 Jul 2019
Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference
William Andrew
C. Greatwood
T. Burghardt
22
52
0
11 Jul 2019
The What-If Tool: Interactive Probing of Machine Learning Models
James Wexler
Mahima Pushkarna
Tolga Bolukbasi
Martin Wattenberg
F. Viégas
Jimbo Wilson
VLM
57
484
0
09 Jul 2019
On the Semantic Interpretability of Artificial Intelligence Models
V. S. Silva
André Freitas
Siegfried Handschuh
AI4CE
25
8
0
09 Jul 2019
The Price of Interpretability
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
23
33
0
08 Jul 2019
A Human-Grounded Evaluation of SHAP for Alert Processing
Hilde J. P. Weerts
Werner van Ipenburg
Mykola Pechenizkiy
FAtt
11
70
0
07 Jul 2019
Generative Counterfactual Introspection for Explainable Deep Learning
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
25
90
0
06 Jul 2019
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
27
63
0
05 Jul 2019
Automating Distributed Tiered Storage Management in Cluster Computing
H. Herodotou
E. Kakoulli
21
24
0
04 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
380
0
03 Jul 2019
A Debiased MDI Feature Importance Measure for Random Forests
Xiao Li
Yu Wang
Sumanta Basu
Karl Kumbier
Bin Yu
27
83
0
26 Jun 2019
DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems
Muhammad Rehman Zafar
N. Khan
FAtt
14
153
0
24 Jun 2019
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
24
56
0
21 Jun 2019
Machine Learning Testing: Survey, Landscapes and Horizons
Jie M. Zhang
Mark Harman
Lei Ma
Yang Liu
VLM
AILaw
39
741
0
19 Jun 2019
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
36
120
0
19 Jun 2019
MoËT: Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning
Marko Vasic
Andrija Petrović
Kaiyuan Wang
Mladen Nikolic
Rishabh Singh
S. Khurshid
OffRL
MoE
20
23
0
16 Jun 2019
Yoga-Veganism: Correlation Mining of Twitter Health Data
Tunazzina Islam
8
22
0
15 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Previous
1
2
3
...
80
81
82
...
85
86
87
Next