ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.09168
11
52

Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution

21 December 2018
Baptiste Broto
F. Bachoc
M. Depecker
    FAtt
ArXivPDFHTML
Abstract

The Shapley effects are global sensitivity indices: they quantify the impact of each input variable on the output variable in a model. In this work, we suggest new estimators of these sensitivity indices. When the input distribution is known, we investigate the already existing estimator and suggest a new one with a lower variance. Then, when the distribution of the inputs is unknown, we extend these estimators. Finally, we provide asymptotic properties of the estimators studied in this article.

View on arXiv
Comments on this paper