Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,266 papers shown
Title
Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making
Michael Veale
Max Van Kleek
Reuben Binns
25
409
0
03 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
38
241
0
02 Feb 2018
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
17
809
0
02 Feb 2018
Interpretable Deep Convolutional Neural Networks via Meta-learning
Xuan Liu
Xiaoguang Wang
Stan Matwin
FaML
27
6
0
02 Feb 2018
A Comparative Study of Rule Extraction for Recurrent Neural Networks
Qinglong Wang
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
Xue Liu
C. Lee Giles
18
11
0
16 Jan 2018
What do we need to build explainable AI systems for the medical domain?
Andreas Holzinger
Chris Biemann
C. Pattichis
D. Kell
28
680
0
28 Dec 2017
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
31
174
0
26 Dec 2017
Towards the Augmented Pathologist: Challenges of Explainable-AI in Digital Pathology
Andreas Holzinger
Bernd Malle
Peter Kieseberg
P. Roth
Heimo Muller
Robert Reihs
K. Zatloukal
19
91
0
18 Dec 2017
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
Explainable AI: Beware of Inmates Running the Asylum Or: How I Learnt to Stop Worrying and Love the Social and Behavioural Sciences
Tim Miller
Piers Howe
L. Sonenberg
AI4TS
SyDa
11
372
0
02 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,800
0
30 Nov 2017
Contextual Outlier Interpretation
Ninghao Liu
DongHwa Shin
Xia Hu
17
72
0
28 Nov 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
37
676
0
26 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
28
281
0
16 Nov 2017
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
Rushil Anirudh
Jayaraman J. Thiagarajan
R. Sridhar
T. Bremer
FAtt
AAML
23
12
0
15 Nov 2017
Dynamic Analysis of Executables to Detect and Characterize Malware
Michael R. Smith
J. Ingram
Christopher C. Lamb
T. Draelos
J. Doak
J. Aimone
C. James
23
13
0
10 Nov 2017
Visualizing and Understanding Atari Agents
S. Greydanus
Anurag Koul
Jonathan Dodge
Alan Fern
FAtt
37
342
0
31 Oct 2017
Do Convolutional Neural Networks Learn Class Hierarchy?
B. Alsallakh
Amin Jourabloo
Mao Ye
Xiaoming Liu
Liu Ren
42
210
0
17 Oct 2017
Practical Machine Learning for Cloud Intrusion Detection: Challenges and the Way Forward
Ramnath Kumar
Andrew W. Wicker
Matt Swann
AAML
21
43
0
20 Sep 2017
Human Understandable Explanation Extraction for Black-box Classification Models Based on Matrix Factorization
Jaedeok Kim
Ji-Hoon Seo
FAtt
18
8
0
18 Sep 2017
Learning the PE Header, Malware Detection with Minimal Domain Knowledge
Edward Raff
Jared Sylvester
Charles K. Nicholas
28
118
0
05 Sep 2017
Understanding and Comparing Deep Neural Networks for Age and Gender Classification
Sebastian Lapuschkin
Alexander Binder
K. Müller
Wojciech Samek
CVBM
37
135
0
25 Aug 2017
Machine learning for neural decoding
Joshua I. Glaser
Ari S. Benjamin
Raeed H. Chowdhury
M. Perich
L. Miller
Konrad Paul Kording
33
242
0
02 Aug 2017
Using Program Induction to Interpret Transition System Dynamics
Svetlin Penkov
S. Ramamoorthy
AI4CE
35
11
0
26 Jul 2017
Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy?
Lin Chen
Moran Feldman
Amin Karbasi
21
47
0
13 Jul 2017
A Formal Framework to Characterize Interpretability of Procedures
Amit Dhurandhar
Vijay Iyengar
Ronny Luss
Karthikeyan Shanmugam
15
19
0
12 Jul 2017
Efficient Data Representation by Selecting Prototypes with Importance Weights
Karthik S. Gurumoorthy
Amit Dhurandhar
Guillermo Cecchi
Charu Aggarwal
26
22
0
05 Jul 2017
Interpretability via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
26
129
0
29 Jun 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
21
4,203
0
22 Jun 2017
MAGIX: Model Agnostic Globally Interpretable Explanations
Nikaash Puri
Piyush B. Gupta
Pratiksha Agarwal
Sukriti Verma
Balaji Krishnamurthy
FAtt
29
41
0
22 Jun 2017
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking
Gabriele Tolomei
Fabrizio Silvestri
Andrew Haines
M. Lalmas
9
203
0
20 Jun 2017
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
37
82
0
29 May 2017
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
35
170
0
23 May 2017
Induction of Interpretable Possibilistic Logic Theories from Relational Data
Ondrej Kuzelka
Jesse Davis
Steven Schockaert
NAI
33
12
0
19 May 2017
A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations
Josua Krause
Aritra Dasgupta
Jordan Swartz
Yindalon Aphinyanagphongs
E. Bertini
FAtt
19
95
0
04 May 2017
Translating Neuralese
Jacob Andreas
Anca Dragan
Dan Klein
31
58
0
23 Apr 2017
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
Minsuk Kahng
Pierre Yves Andrews
Aditya Kalro
Duen Horng Chau
HAI
23
322
0
06 Apr 2017
It Takes Two to Tango: Towards Theory of AI's Mind
Arjun Chandrasekaran
Deshraj Yadav
Prithvijit Chattopadhyay
Viraj Prabhu
Devi Parikh
38
54
0
03 Apr 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
43
583
0
10 Mar 2017
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly
Ethan R. Elenberg
A. Dimakis
Moran Feldman
Amin Karbasi
19
89
0
08 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
45
5,865
0
04 Mar 2017
Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations
Upol Ehsan
Brent Harrison
Larry Chan
Mark O. Riedl
25
217
0
25 Feb 2017
EVE: Explainable Vector Based Embedding Technique Using Wikipedia
M. A. Qureshi
Derek Greene
25
33
0
22 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Summoning Demons: The Pursuit of Exploitable Bugs in Machine Learning
Rock Stevens
H. Aggarwal
Himani Arora
Sanghyun Hong
M. Hicks
Chetan Arora
SILM
AAML
11
18
0
17 Jan 2017
Identifying Best Interventions through Online Importance Sampling
Rajat Sen
Karthikeyan Shanmugam
A. Dimakis
Sanjay Shakkottai
28
72
0
10 Jan 2017
Interactive Elicitation of Knowledge on Feature Relevance Improves Predictions in Small Data Sets
L. Micallef
Iiris Sundin
Pekka Marttinen
Muhammad Ammad-ud-din
Tomi Peltola
Marta Soare
Giulio Jacucci
Samuel Kaski
11
28
0
07 Dec 2016
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
Yash Goyal
Tejas Khot
D. Summers-Stay
Dhruv Batra
Devi Parikh
CoGe
143
3,130
0
02 Dec 2016
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation
Wojciech Samek
G. Montavon
Alexander Binder
Sebastian Lapuschkin
K. Müller
FAtt
AI4CE
52
48
0
24 Nov 2016
Previous
1
2
3
...
84
85
86
Next