ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10469
17
0

How to improve the interpretability of kernel learning

21 November 2018
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
    FAtt
ArXivPDFHTML
Abstract

In recent years, machine learning researchers have focused on methods to construct flexible and interpretable prediction models. However, an interpretability evaluation, a relationship between generalization performance and an interpretability of the model and a method for improving the interpretability have to be considered. In this paper, a quantitative index of the interpretability is proposed and its rationality is proved, and equilibrium problem between the interpretability and the generalization performance is analyzed. Probability upper bound of the sum of the two performances is analyzed. For traditional supervised kernel machine learning problem, a universal learning framework is put forward to solve the equilibrium problem between the two performances. The condition for global optimal solution based on the framework is deduced. The learning framework is applied to the least-squares support vector machine and is evaluated by some experiments.

View on arXiv
Comments on this paper