ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04938
  4. Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier

"Why Should I Trust You?": Explaining the Predictions of Any Classifier

16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
    FAtt
    FaML
ArXivPDFHTML

Papers citing ""Why Should I Trust You?": Explaining the Predictions of Any Classifier"

50 / 4,337 papers shown
Title
Using Integrated Gradients and Constituency Parse Trees to explain
  Linguistic Acceptability learnt by BERT
Using Integrated Gradients and Constituency Parse Trees to explain Linguistic Acceptability learnt by BERT
Anmol Nayak
Hariprasad Timmapathini
35
4
0
01 Jun 2021
Efficient Explanations With Relevant Sets
Efficient Explanations With Relevant Sets
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
25
15
0
01 Jun 2021
To trust or not to trust an explanation: using LEAF to evaluate local
  linear XAI methods
To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods
E. Amparore
Alan Perotti
P. Bajardi
FAtt
33
68
0
01 Jun 2021
Understanding peacefulness through the world news
Understanding peacefulness through the world news
Vasiliki Voukelatou
Ioanna Miliou
F. Giannotti
Luca Pappalardo
6
0
0
01 Jun 2021
Explanations for Monotonic Classifiers
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
16
43
0
01 Jun 2021
HiddenCut: Simple Data Augmentation for Natural Language Understanding
  with Better Generalization
HiddenCut: Simple Data Augmentation for Natural Language Understanding with Better Generalization
Jiaao Chen
Dinghan Shen
Weizhu Chen
Diyi Yang
BDL
27
47
0
31 May 2021
Bounded logit attention: Learning to explain image classifiers
Bounded logit attention: Learning to explain image classifiers
Thomas Baumhauer
D. Slijepcevic
Matthias Zeppelzauer
FAtt
27
2
0
31 May 2021
An exact counterfactual-example-based approach to tree-ensemble models
  interpretability
An exact counterfactual-example-based approach to tree-ensemble models interpretability
P. Blanchart
16
4
0
31 May 2021
EDDA: Explanation-driven Data Augmentation to Improve Explanation
  Faithfulness
EDDA: Explanation-driven Data Augmentation to Improve Explanation Faithfulness
Ruiwen Li
Zhibo Zhang
Jiani Li
C. Trabelsi
Scott Sanner
Jongseong Jang
Yeonjeong Jeong
Dongsub Shim
AAML
21
1
0
29 May 2021
Do not explain without context: addressing the blind spot of model
  explanations
Do not explain without context: addressing the blind spot of model explanations
Katarzyna Wo'znica
Katarzyna Pkekala
Hubert Baniecki
Wojciech Kretowicz
El.zbieta Sienkiewicz
P. Biecek
28
1
0
28 May 2021
ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment
  Prediction and Explanation
ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation
Vijit Malik
Rishabh Sanjay
S. Nigam
Kripabandhu Ghosh
S. Guha
Arnab Bhattacharya
Ashutosh Modi
ELM
AILaw
29
144
0
28 May 2021
Explainable Multi-class Classification of the CAMH COVID-19 Mental
  Health Data
Explainable Multi-class Classification of the CAMH COVID-19 Mental Health Data
Yuanzheng Hu
Marina Sokolova
19
7
0
27 May 2021
Sinan: Data-Driven, QoS-Aware Cluster Management for Microservices
Sinan: Data-Driven, QoS-Aware Cluster Management for Microservices
Yanqi Zhang
Weizhe Hua
Zhuangzhuang Zhou
Ed Suh
Christina Delimitrou
17
0
0
27 May 2021
CrystalCandle: A User-Facing Model Explainer for Narrative Explanations
CrystalCandle: A User-Facing Model Explainer for Narrative Explanations
Jilei Yang
Diana M. Negoescu
P. Ahammad
16
1
0
27 May 2021
Fooling Partial Dependence via Data Poisoning
Fooling Partial Dependence via Data Poisoning
Hubert Baniecki
Wojciech Kretowicz
P. Biecek
AAML
34
23
0
26 May 2021
Towards Transparent Application of Machine Learning in Video Processing
Towards Transparent Application of Machine Learning in Video Processing
L. Murn
Marc Górriz Blanch
M. Santamaría
F. Rivera
M. Mrak
23
1
0
26 May 2021
An Explainable Probabilistic Classifier for Categorical Data Inspired to
  Quantum Physics
An Explainable Probabilistic Classifier for Categorical Data Inspired to Quantum Physics
E. Guidotti
Alfio Ferrara
22
3
0
26 May 2021
Principal Component Hierarchy for Sparse Quadratic Programs
Principal Component Hierarchy for Sparse Quadratic Programs
R. Vreugdenhil
Viet Anh Nguyen
Armin Eftekhari
Peyman Mohajerin Esfahani
36
2
0
25 May 2021
Deep Descriptive Clustering
Deep Descriptive Clustering
Hongjing Zhang
Ian Davidson
22
6
0
24 May 2021
Word-level Text Highlighting of Medical Texts for Telehealth Services
Word-level Text Highlighting of Medical Texts for Telehealth Services
Ozan Ozyegen
D. Kabe
Mucahit Cevik
68
17
0
21 May 2021
On Explaining Random Forests with SAT
On Explaining Random Forests with SAT
Yacine Izza
Sasha Rubin
FAtt
30
72
0
21 May 2021
Yes We Care! -- Certification for Machine Learning Methods through the
  Care Label Framework
Yes We Care! -- Certification for Machine Learning Methods through the Care Label Framework
K. Morik
Helena Kotthaus
Raphael Fischer
Sascha Mucke
Matthias Jakobs
Nico Piatkowski
Andrea Pauly
Lukas Heppe
Danny Heinrich
19
11
0
21 May 2021
Explainable Machine Learning with Prior Knowledge: An Overview
Explainable Machine Learning with Prior Knowledge: An Overview
Katharina Beckh
Sebastian Müller
Matthias Jakobs
Vanessa Toborek
Hanxiao Tan
Raphael Fischer
Pascal Welke
Sebastian Houben
Laura von Rueden
XAI
27
28
0
21 May 2021
Probabilistic Sufficient Explanations
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
30
23
0
21 May 2021
Explainable Activity Recognition for Smart Home Systems
Explainable Activity Recognition for Smart Home Systems
Devleena Das
Yasutaka Nishimura
R. Vivek
Naoto Takeda
Sean T. Fish
Thomas Ploetz
Sonia Chernova
26
41
0
20 May 2021
Evaluating the Correctness of Explainable AI Algorithms for
  Classification
Evaluating the Correctness of Explainable AI Algorithms for Classification
Orcun Yalcin
Xiuyi Fan
Siyuan Liu
XAI
FAtt
21
15
0
20 May 2021
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks
Thorben Funke
Megha Khosla
Mandeep Rathee
Avishek Anand
FAtt
28
38
0
18 May 2021
Self-interpretable Convolutional Neural Networks for Text Classification
Self-interpretable Convolutional Neural Networks for Text Classification
Wei Zhao
Rahul Singh
Tarun Joshi
Agus Sudjianto
V. Nair
FAtt
MILM
23
6
0
18 May 2021
Algorithm-Agnostic Explainability for Unsupervised Clustering
Algorithm-Agnostic Explainability for Unsupervised Clustering
Charles A. Ellis
M. Sendi
Eloy P. T. Geenjaar
Sergey Plis
Robyn L. Miller
Vince D. Calhoun
21
25
0
17 May 2021
Fine-grained Interpretation and Causation Analysis in Deep NLP Models
Fine-grained Interpretation and Causation Analysis in Deep NLP Models
Hassan Sajjad
Narine Kokhlikyan
Fahim Dalvi
Nadir Durrani
MILM
35
8
0
17 May 2021
A Review on Explainability in Multimodal Deep Neural Nets
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
34
140
0
17 May 2021
How to Explain Neural Networks: an Approximation Perspective
How to Explain Neural Networks: an Approximation Perspective
Hangcheng Dong
Bingguo Liu
Fengdong Chen
Dong Ye
Guodong Liu
FAtt
31
1
0
17 May 2021
Abstraction, Validation, and Generalization for Explainable Artificial
  Intelligence
Abstraction, Validation, and Generalization for Explainable Artificial Intelligence
Scott Cheng-Hsin Yang
Tomas Folke
Patrick Shafto
21
5
0
16 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A
  Systematic Survey of Surveys on Methods and Concepts
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
34
184
0
15 May 2021
Cohort Shapley value for algorithmic fairness
Cohort Shapley value for algorithmic fairness
Masayoshi Mase
Art B. Owen
Benjamin B. Seiler
26
14
0
15 May 2021
Feature-Based Interpretable Reinforcement Learning based on
  State-Transition Models
Feature-Based Interpretable Reinforcement Learning based on State-Transition Models
Omid Davoodi
Majid Komeili
FAtt
OffRL
27
6
0
14 May 2021
Cause and Effect: Hierarchical Concept-based Explanation of Neural
  Networks
Cause and Effect: Hierarchical Concept-based Explanation of Neural Networks
Mohammad Nokhbeh Zaeem
Majid Komeili
CML
25
9
0
14 May 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
29
0
0
14 May 2021
DoS and DDoS Mitigation Using Variational Autoencoders
DoS and DDoS Mitigation Using Variational Autoencoders
Eirik Molde Bårli
Anis Yazidi
E. Herrera-Viedma
H. Haugerud
AAML
DRL
8
16
0
14 May 2021
SAT-Based Rigorous Explanations for Decision Lists
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
32
44
0
14 May 2021
Discovering the Rationale of Decisions: Experiments on Aligning Learning
  and Reasoning
Discovering the Rationale of Decisions: Experiments on Aligning Learning and Reasoning
Cor Steging
S. Renooij
Bart Verheij
12
21
0
14 May 2021
XAI Handbook: Towards a Unified Framework for Explainable AI
XAI Handbook: Towards a Unified Framework for Explainable AI
Sebastián M. Palacio
Adriano Lucieri
Mohsin Munir
Jörn Hees
Sheraz Ahmed
Andreas Dengel
25
32
0
14 May 2021
Bias, Fairness, and Accountability with AI and ML Algorithms
Bias, Fairness, and Accountability with AI and ML Algorithms
Neng-Zhi Zhou
Zach Zhang
V. Nair
Harsh Singhal
Jie Chen
Agus Sudjianto
FaML
21
9
0
13 May 2021
Addressing Fairness, Bias and Class Imbalance in Machine Learning: the
  FBI-loss
Addressing Fairness, Bias and Class Imbalance in Machine Learning: the FBI-loss
E. Ferrari
D. Bacciu
FaML
AI4CE
33
6
0
13 May 2021
Explainable Machine Learning for Fraud Detection
Explainable Machine Learning for Fraud Detection
I. Psychoula
A. Gutmann
Pradip Mainali
Sharon H. Lee
Paul Dunphy
F. Petitcolas
FaML
77
36
0
13 May 2021
Privacy Inference Attacks and Defenses in Cloud-based Deep Neural
  Network: A Survey
Privacy Inference Attacks and Defenses in Cloud-based Deep Neural Network: A Survey
Xiaoyu Zhang
Chao Chen
Yi Xie
Xiaofeng Chen
Jun Zhang
Yang Xiang
FedML
27
7
0
13 May 2021
Sufficient reasons for classifier decisions in the presence of
  constraints
Sufficient reasons for classifier decisions in the presence of constraints
Niku Gorji
S. Rubin
17
3
0
12 May 2021
What's wrong with this video? Comparing Explainers for Deepfake
  Detection
What's wrong with this video? Comparing Explainers for Deepfake Detection
Samuele Pino
Mark J. Carman
Paolo Bestagini
AAML
20
7
0
12 May 2021
A Graph Neural Network Approach for Product Relationship Prediction
A Graph Neural Network Approach for Product Relationship Prediction
Faez Ahmed
Yaxin Cui
Yan Fu
Wei Chen
GNN
30
7
0
12 May 2021
Transitioning to human interaction with AI systems: New challenges and
  opportunities for HCI professionals to enable human-centered AI
Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI
Wei Xu
Marvin Dainoff
Liezhong Ge
Zaifeng Gao
59
169
0
12 May 2021
Previous
123...686970...858687
Next