Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04938
Cited By
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
16 February 2016
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
""Why Should I Trust You?": Explaining the Predictions of Any Classifier"
50 / 4,376 papers shown
Title
Best of both worlds: local and global explanations with human-understandable concepts
Jessica Schrouff
Sebastien Baur
Shaobo Hou
Diana Mincu
Eric Loreaux
Ralph Blanes
James Wexler
Alan Karthikesalingam
Been Kim
FAtt
34
28
0
16 Jun 2021
Counterfactual Graphs for Explainable Classification of Brain Networks
Carlo Abrate
Francesco Bonchi
CML
30
55
0
16 Jun 2021
Developing a Fidelity Evaluation Approach for Interpretable Machine Learning
M. Velmurugan
Chun Ouyang
Catarina Moreira
Renuka Sindhgatta
XAI
29
16
0
16 Jun 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
51
4
0
15 Jun 2021
Generating Contrastive Explanations for Inductive Logic Programming Based on a Near Miss Approach
Johannes Rabold
M. Siebers
Ute Schmid
31
14
0
15 Jun 2021
S-LIME: Stabilized-LIME for Model Explanation
Zhengze Zhou
Giles Hooker
Fei Wang
FAtt
30
88
0
15 Jun 2021
Keep CALM and Improve Visual Feature Attribution
Jae Myung Kim
Junsuk Choe
Zeynep Akata
Seong Joon Oh
FAtt
350
20
0
15 Jun 2021
Controlling Neural Networks with Rule Representations
Sungyong Seo
Sercan O. Arik
Jinsung Yoon
Xiang Zhang
Kihyuk Sohn
Tomas Pfister
OOD
AI4CE
37
35
0
14 Jun 2021
Tracing Back Music Emotion Predictions to Sound Sources and Intuitive Perceptual Qualities
Shreyan Chowdhury
Verena Praher
Gerhard Widmer
13
14
0
14 Jun 2021
Pitfalls of Explainable ML: An Industry Perspective
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
21
9
0
14 Jun 2021
Counterfactual Explanations as Interventions in Latent Space
Riccardo Crupi
Alessandro Castelnovo
D. Regoli
Beatriz San Miguel González
CML
16
24
0
14 Jun 2021
Characterizing the risk of fairwashing
Ulrich Aïvodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
23
27
0
14 Jun 2021
Can Explainable AI Explain Unfairness? A Framework for Evaluating Explainable AI
Kiana Alikhademi
Brianna Richardson
E. Drobina
J. Gilbert
38
33
0
14 Jun 2021
Certification of embedded systems based on Machine Learning: A survey
Guillaume Vidot
Christophe Gabreau
I. Ober
Iulian Ober
16
12
0
14 Jun 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
19
20
0
13 Jun 2021
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lio
Marco Gori
S. Melacci
FAtt
XAI
30
78
0
12 Jun 2021
Explaining the Deep Natural Language Processing by Mining Textual Interpretable Features
F. Ventura
Salvatore Greco
D. Apiletti
Tania Cerquitelli
14
1
0
12 Jun 2021
Local Explanation of Dialogue Response Generation
Yi-Lin Tuan
Connor Pryor
Wenhu Chen
Lise Getoor
Wenjie Wang
30
11
0
11 Jun 2021
FedNLP: An interpretable NLP System to Decode Federal Reserve Communications
Jean Lee
Hoyoul Luis Youn
Nicholas Stevens
Josiah Poon
S. Han
24
10
0
11 Jun 2021
Interpreting Expert Annotation Differences in Animal Behavior
Megan Tjandrasuwita
Jennifer J. Sun
Ann Kennedy
Swarat Chaudhuri
Yisong Yue
19
8
0
11 Jun 2021
Cross-lingual Emotion Detection
Sabit Hassan
Shaden Shaar
Kareem Darwish
32
12
0
10 Jun 2021
On the overlooked issue of defining explanation objectives for local-surrogate explainers
Rafael Poyiadzi
X. Renard
Thibault Laugel
Raúl Santos-Rodríguez
Marcin Detyniecki
21
6
0
10 Jun 2021
Explainable AI, but explainable to whom?
Julie Gerlings
Millie Søndergaard Jensen
Arisa Shollo
46
43
0
10 Jun 2021
An Interpretable Neural Network for Parameter Inference
Johann Pfitzinger
34
0
0
10 Jun 2021
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAtt
AI4TS
30
80
0
09 Jun 2021
Exploiting auto-encoders and segmentation methods for middle-level explanations of image classification systems
Andrea Apicella
Salvatore Giugliano
Francesco Isgrò
R. Prevete
14
18
0
09 Jun 2021
Learning Domain Invariant Representations by Joint Wasserstein Distance Minimization
Léo Andéol
Yusei Kawakami
Yuichiro Wada
Takafumi Kanamori
K. Müller
G. Montavon
OOD
44
7
0
09 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
31
32
0
09 Jun 2021
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Wei Zhang
Ziming Huang
Yada Zhu
Guangnan Ye
Xiaodong Cui
Fan Zhang
60
17
0
09 Jun 2021
On the Lack of Robust Interpretability of Neural Text Classifiers
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
K. Kenthapadi
AAML
16
21
0
08 Jun 2021
White Paper Assistance: A Step Forward Beyond the Shortcut Learning
Xuan Cheng
Tianshu Xie
Xiaomin Wang
Jiali Deng
Minghui Liu
Meilin Liu
AAML
26
0
0
08 Jun 2021
Amortized Generation of Sequential Algorithmic Recourses for Black-box Models
Sahil Verma
Keegan E. Hines
John P. Dickerson
22
23
0
07 Jun 2021
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDI
FAtt
16
13
0
07 Jun 2021
3DB: A Framework for Debugging Computer Vision Models
Guillaume Leclerc
Hadi Salman
Andrew Ilyas
Sai H. Vemprala
Logan Engstrom
...
Pengchuan Zhang
Shibani Santurkar
Greg Yang
Ashish Kapoor
Aleksander Madry
40
40
0
07 Jun 2021
Explainable Artificial Intelligence (XAI) for Increasing User Trust in Deep Reinforcement Learning Driven Autonomous Systems
Jeff Druce
M. Harradon
J. Tittle
XAI
11
16
0
07 Jun 2021
Causal Abstractions of Neural Networks
Atticus Geiger
Hanson Lu
Thomas Icard
Christopher Potts
NAI
CML
33
228
0
06 Jun 2021
Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning
Yatao Bian
Yu Rong
Tingyang Xu
Jiaxiang Wu
Andreas Krause
Junzhou Huang
51
16
0
05 Jun 2021
Constrained Generalized Additive 2 Model with Consideration of High-Order Interactions
Akihisa Watanabe
Michiya Kuramata
Kaito Majima
Haruka Kiyohara
Kensho Kondo
Kazuhide Nakata
AI4CE
17
2
0
05 Jun 2021
Impact of data-splits on generalization: Identifying COVID-19 from cough and context
Makkunda Sharma
Nikhil Shenoy
Jigar Doshi
Piyush Bagad
Aman Dalmia
Parag Bhamare
A. Mahale
S. Rane
Neeraj Agrawal
R. Panicker
OOD
61
4
0
05 Jun 2021
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
20
136
0
04 Jun 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
47
41
0
04 Jun 2021
Evaluating Local Explanations using White-box Models
Amir Hossein Akhavan Rahnama
Judith Butepage
Pierre Geurts
Henrik Bostrom
FAtt
30
0
0
04 Jun 2021
Finding and Fixing Spurious Patterns with Explanations
Gregory Plumb
Marco Tulio Ribeiro
Ameet Talwalkar
43
41
0
03 Jun 2021
Exploring Distantly-Labeled Rationales in Neural Network Models
Quzhe Huang
Shengqi Zhu
Yansong Feng
Dongyan Zhao
12
10
0
03 Jun 2021
Causality in Neural Networks -- An Extended Abstract
Abbavaram Gowtham Reddy
CML
OOD
16
1
0
03 Jun 2021
Dissecting Generation Modes for Abstractive Summarization Models via Ablation and Attribution
Jiacheng Xu
Greg Durrett
38
16
0
03 Jun 2021
Towards an Explanation Space to Align Humans and Explainable-AI Teamwork
G. Cabour
A. Morales
É. Ledoux
S. Bassetto
30
5
0
02 Jun 2021
On Efficiently Explaining Graph-Based Classifiers
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
55
37
0
02 Jun 2021
When and Why does a Model Fail? A Human-in-the-loop Error Detection Framework for Sentiment Analysis
Zhe Liu
Yufan Guo
J. Mahmud
17
9
0
02 Jun 2021
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Peter Hase
Harry Xie
Joey Tianyi Zhou
OODD
LRM
FAtt
43
91
0
01 Jun 2021
Previous
1
2
3
...
67
68
69
...
86
87
88
Next