106
46

Explanations for Monotonic Classifiers

Abstract

In many classification tasks there is a requirement of monotonicity. Concretely, if all else remains constant, increasing (resp. decreasing) the value of one or more features must not decrease (resp. increase) the value of the prediction. Despite comprehensive efforts on learning monotonic classifiers, dedicated approaches for explaining monotonic classifiers are scarce and classifier-specific. This paper describes novel algorithms for the computation of one formal explanation of a (black-box) monotonic classifier. These novel algorithms are polynomial in the run time complexity of the classifier and the number of features. Furthermore, the paper presents a practically efficient model-agnostic algorithm for enumerating formal explanations.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.