Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
A spectral regularisation framework for latent variable models designed for single channel applications
Ryan Balshaw
P. Heyns
Daniel N. Wilke
Stephan Schmidt
48
1
0
30 Oct 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
79
10
0
29 Oct 2023
Variance-based sensitivity of Bayesian inverse problems to the prior distribution
John E. Darges
A. Alexanderian
P. Gremaud
35
1
0
27 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
69
10
0
26 Oct 2023
Adaptive importance sampling for heavy-tailed distributions via
α
α
α
-divergence minimization
Thomas Guilmeau
Nicola Branchini
Émilie Chouzenoux
Victor Elvira
83
2
0
25 Oct 2023
Particle-based Variational Inference with Generalized Wasserstein Gradient Flow
Ziheng Cheng
Shiyue Zhang
Longlin Yu
Cheng Zhang
BDL
67
10
0
25 Oct 2023
Joint Distributional Learning via Cramer-Wold Distance
SeungHwan An
Jong-June Jeon
67
0
0
25 Oct 2023
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
139
2
0
25 Oct 2023
SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving
Xueliang Zhao
Xinting Huang
Wei Bi
Lingpeng Kong
LRM
91
1
0
19 Oct 2023
Subject-specific Deep Neural Networks for Count Data with High-cardinality Categorical Features
Hangbin Lee
I. Ha
Changha Hwang
Youngjo Lee
50
1
0
18 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
71
3
0
16 Oct 2023
Sub-optimality of the Naive Mean Field approximation for proportional high-dimensional Linear Regression
Jiaze Qiu
60
3
0
15 Oct 2023
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
63
0
0
13 Oct 2023
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
94
1
0
13 Oct 2023
Hamiltonian Dynamics of Bayesian Inference Formalised by Arc Hamiltonian Systems
Takuo Matsubara
44
0
0
11 Oct 2023
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
74
0
0
11 Oct 2023
Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
Huangjie Zheng
Zhendong Wang
Jianbo Yuan
Guanghan Ning
Pengcheng He
Quanzeng You
Hongxia Yang
Mingyuan Zhou
84
12
0
10 Oct 2023
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
Marvin Schmitt
Desi R. Ivanova
Daniel Habermann
Baixu Chen
Jie Jiang
Stefan T. Radev
FedML
90
7
0
06 Oct 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
99
5
0
06 Oct 2023
Sampling via Gradient Flows in the Space of Probability Measures
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
77
15
0
05 Oct 2023
Cutting Feedback in Misspecified Copula Models
Michael Stanley Smith
Weichang Yu
David J. Nott
David T. Frazier
84
1
0
05 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
137
49
0
04 Oct 2023
If there is no underfitting, there is no Cold Posterior Effect
Yijie Zhang
Yi-Shan Wu
Luis A. Ortega
A. Masegosa
UQCV
70
1
0
02 Oct 2023
Drug Discovery with Dynamic Goal-aware Fragments
Seul Lee
Seanie Lee
Kenji Kawaguchi
Sung Ju Hwang
125
9
0
02 Oct 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
101
80
0
01 Oct 2023
A General Offline Reinforcement Learning Framework for Interactive Recommendation
Teng Xiao
Donglin Wang
OffRL
115
74
0
01 Oct 2023
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
95
4
0
29 Sep 2023
Stochastic Implicit Neural Signed Distance Functions for Safe Motion Planning under Sensing Uncertainty
Carlos Quintero-Peña
Wil Thomason
Bo Xiong
Anastasios Kyrillidis
Lydia E. Kavraki
67
7
0
28 Sep 2023
A Variational Spike-and-Slab Approach for Group Variable Selection
M. Ramezani
Hossein Rastgoftar
Jun S. Liu
65
0
0
28 Sep 2023
A Mean Field Approach to Empirical Bayes Estimation in High-dimensional Linear Regression
Soumendu Sundar Mukherjee
Bodhisattva Sen
Subhabrata Sen
82
5
0
28 Sep 2023
Generating Personalized Insulin Treatments Strategies with Deep Conditional Generative Time Series Models
Manuel Schürch
Xiang Li
Ahmed Allam
Giulia Rathmes
Amina Mollaysa
Claudia Cavelti-Weder
Michael Krauthammer
AI4TS
70
4
0
28 Sep 2023
FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for Independence-Assumption-Free Uncertainty Estimation
Songlin Wei
JIazhao Zhang
Yang Wang
Ruben Verborgh
Hao Su
He Wang
AI4CE
72
3
0
28 Sep 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
114
20
0
28 Sep 2023
Bayesian Personalized Federated Learning with Shared and Personalized Uncertainty Representations
Hui Chen
Hengyu Liu
LongBing Cao
Tiancheng Zhang
FedML
98
3
0
27 Sep 2023
Improvements on Scalable Stochastic Bayesian Inference Methods for Multivariate Hawkes Process
Alex Ziyu Jiang
Abel Rodríguez
58
1
0
26 Sep 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
54
1
0
26 Sep 2023
Generative Filtering for Recursive Bayesian Inference with Streaming Data
Ian Taylor
Andee Kaplan
Brenda Betancourt
57
0
0
25 Sep 2023
Independent projections of diffusions: Gradient flows for variational inference and optimal mean field approximations
D. Lacker
DiffM
70
9
0
23 Sep 2023
Bayesian sparsification for deep neural networks with Bayesian model reduction
Dimitrije Marković
K. Friston
S. Kiebel
BDL
UQCV
76
2
0
21 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
86
28
0
20 Sep 2023
Generalizing Across Domains in Diabetic Retinopathy via Variational Autoencoders
Sharon Chokuwa
M. H. Khan
95
5
0
20 Sep 2023
Conformalized Multimodal Uncertainty Regression and Reasoning
Mimmo Parente
Nastaran Darabi
Alex C. Stutts
Theja Tulabandhula
A. R. Trivedi
UQCV
84
8
0
20 Sep 2023
Group Spike and Slab Variational Bayes
M. Komodromos
Marina Evangelou
Sarah Filippi
Kolyan Ray
100
2
0
19 Sep 2023
Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs via Double Normalizing Flows
Jian Xu
Shian Du
Junmei Yang
Xinghao Ding
John Paisley
Delu Zeng
75
0
0
17 Sep 2023
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
Sutanu Gayen
Kuldeep S. Meel
Dimitrios Myrisiotis
A. Pavan
N. V. Vinodchandran
37
4
0
17 Sep 2023
Beta Diffusion
Mingyuan Zhou
Tianqi Chen
Zhendong Wang
Huangjie Zheng
DiffM
95
13
0
14 Sep 2023
All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks
R. D. East
Guillermo Alonso-Linaje
Chae-Yeun Park
52
13
0
13 Sep 2023
Dynamic Causal Disentanglement Model for Dialogue Emotion Detection
Yuting Su
Yichen Wei
Weizhi Nie
Sicheng Zhao
Anan Liu
71
4
0
13 Sep 2023
Towards the TopMost: A Topic Modeling System Toolkit
Xiaobao Wu
Fengjun Pan
Anh Tuan Luu
119
17
0
13 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
74
3
0
08 Sep 2023
Previous
1
2
3
...
8
9
10
...
35
36
37
Next