ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
218
10
0
27 Dec 2023
Explicit-Implicit Subgoal Planning for Long-Horizon Tasks with Sparse
  Reward
Explicit-Implicit Subgoal Planning for Long-Horizon Tasks with Sparse Reward
Fangyuan Wang
Anqing Duan
Peng Zhou
Shengzeng Huo
Guodong Guo
Chenguang Yang
D. Navarro-Alarcon
OffRLVLM
80
0
0
25 Dec 2023
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
  from Pre-trained Models
Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-trained Models
Gianni Franchi
Olivier Laurent
Maxence Leguéry
Andrei Bursuc
Andrea Pilzer
Angela Yao
UQCVBDL
62
6
0
23 Dec 2023
Partially factorized variational inference for high-dimensional mixed
  models
Partially factorized variational inference for high-dimensional mixed models
Max Goplerud
O. Papaspiliopoulos
Giacomo Zanella
45
7
0
20 Dec 2023
Online Variational Sequential Monte Carlo
Online Variational Sequential Monte Carlo
Alessandro Mastrototaro
Jimmy Olsson
BDLOffRL
85
3
0
19 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CMLAI4CE
160
3
0
19 Dec 2023
Bayesian Model Selection via Mean-Field Variational Approximation
Bayesian Model Selection via Mean-Field Variational Approximation
Yangfan Zhang
Yun Yang
38
5
0
17 Dec 2023
Joint State Estimation and Noise Identification Based on Variational
  Optimization
Joint State Estimation and Noise Identification Based on Variational Optimization
Hua Lan
Shijie Zhao
Jinjie Hu
Zengfu Wang
Jing-Zhi Fu
41
2
0
15 Dec 2023
Stein-MAP: A Sequential Variational Inference Framework for Maximum A
  Posteriori Estimation
Stein-MAP: A Sequential Variational Inference Framework for Maximum A Posteriori Estimation
Min-Won Seo
Solmaz S. Kia
68
2
0
14 Dec 2023
Empirical Validation of Conformal Prediction for Trustworthy Skin
  Lesions Classification
Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification
Jamil Fayyad
Shadi Alijani
Homayoun Najjaran
OOD
125
8
0
12 Dec 2023
Randomized Physics-Informed Machine Learning for Uncertainty
  Quantification in High-Dimensional Inverse Problems
Randomized Physics-Informed Machine Learning for Uncertainty Quantification in High-Dimensional Inverse Problems
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
81
2
0
11 Dec 2023
Sparse Variational Student-t Processes
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
128
1
0
09 Dec 2023
Interpretable Mechanistic Representations for Meal-level Glycemic
  Control in the Wild
Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild
Ke Alexander Wang
Emily B. Fox
DRL
58
0
0
06 Dec 2023
Balanced Marginal and Joint Distributional Learning via Mixture
  Cramer-Wold Distance
Balanced Marginal and Joint Distributional Learning via Mixture Cramer-Wold Distance
SeungHwan An
Sungchul Hong
Jong-June Jeon
67
0
0
06 Dec 2023
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
Yiheng Jiang
Sinho Chewi
Aram-Alexandre Pooladian
197
10
0
05 Dec 2023
Revisiting Topic-Guided Language Models
Revisiting Topic-Guided Language Models
Carolina Zheng
Keyon Vafa
David M. Blei
BDL
55
1
0
04 Dec 2023
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates
  of an Antarctic Ice Shelf from Isochronal Layers
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers
Guy Moss
V. Višnjević
Olaf Eisen
Falk M. Oraschewski
Cornelius Schroder
Jakob H. Macke
R. Drews
60
3
0
03 Dec 2023
Investigating a domain adaptation approach for integrating different
  measurement instruments in a longitudinal clinical registry
Investigating a domain adaptation approach for integrating different measurement instruments in a longitudinal clinical registry
Maren Hackenberg
Michelle Pfaffenlehner
Max Behrens
Astrid Pechmann
Janbernd Kirschner
Harald Binder
57
0
0
01 Dec 2023
Auto-encoding GPS data to reveal individual and collective behaviour
Auto-encoding GPS data to reveal individual and collective behaviour
Saint-Clair Chabert-Liddell
Nicolas Bez
Pierre Gloaguen
Sophie Donnet
Stéphanie Mahévas
61
1
0
01 Dec 2023
Entropy and the Kullback-Leibler Divergence for Bayesian Networks:
  Computational Complexity and Efficient Implementation
Entropy and the Kullback-Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation
Marco Scutari
77
2
0
29 Nov 2023
Variational Bayes image restoration with compressive autoencoders
Variational Bayes image restoration with compressive autoencoders
Maud Biquard
Marie Chabert
Thomas Oberlin
78
2
0
29 Nov 2023
On the Impact of Sampling on Deep Sequential State Estimation
On the Impact of Sampling on Deep Sequential State Estimation
Helena Calatrava
R. Borsoi
Tales Imbiriba
Pau Closas
BDL
35
0
0
28 Nov 2023
Variational Inference for the Latent Shrinkage Position Model
Variational Inference for the Latent Shrinkage Position Model
Xian Yao Gwee
I. C. Gormley
Michael Fop
37
0
0
28 Nov 2023
A statistical approach to latent dynamic modeling with differential equations
A statistical approach to latent dynamic modeling with differential equations
Maren Hackenberg
Astrid Pechmann
Clemens Kreutz
Janbernd Kirschner
Harald Binder
67
1
0
27 Nov 2023
Robust Errant Beam Prognostics with Conditional Modeling for Particle
  Accelerators
Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators
Kishansingh Rajput
Malachi Schram
Willem Blokland
Yasir Alanazi
Pradeep Ramuhalli
Alexander Zhukov
Charles Peters
Ricardo Vilalta
72
6
0
22 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal
  Prediction and Bayesian Deep Learning
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
84
0
0
21 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
91
2
0
21 Nov 2023
hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
  applications
hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience applications
Giulia Cisotto
Alberto Zancanaro
I. Zoppis
Sara Manzoni
68
3
0
20 Nov 2023
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet
  Variational Autoencoder for Hyperspectral Pixel Unmixing
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet Variational Autoencoder for Hyperspectral Pixel Unmixing
S. Chitnis
Kiran Mantripragada
Faisal Z. Qureshi
61
0
0
17 Nov 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based
  Inference
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
155
5
0
17 Nov 2023
vEEGNet: learning latent representations to reconstruct EEG raw data via
  variational autoencoders
vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders
Alberto Zancanaro
Giulia Cisotto
I. Zoppis
Sara Manzoni
DRL
68
5
0
16 Nov 2023
On the Quantification of Image Reconstruction Uncertainty without
  Training Data
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
60
1
0
16 Nov 2023
Modeling Complex Disease Trajectories using Deep Generative Models with
  Semi-Supervised Latent Processes
Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes
Cécile Trottet
Manuel Schürch
Ahmed Allam
Imon Barua
L. Petelytska
Oliver Distler
A. Hoffmann-Vold
Michael Krauthammer
Eustar collaborators
85
2
0
14 Nov 2023
Data-Efficient Task Generalization via Probabilistic Model-based Meta
  Reinforcement Learning
Data-Efficient Task Generalization via Probabilistic Model-based Meta Reinforcement Learning
Arjun Bhardwaj
Jonas Rothfuss
Bhavya Sukhija
Yarden As
Marco Hutter
Stelian Coros
Andreas Krause
94
5
0
13 Nov 2023
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
71
1
0
09 Nov 2023
Conditional Optimal Transport on Function Spaces
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
122
16
0
09 Nov 2023
Inferring stochastic rates from heterogeneous snapshots of particle
  positions
Inferring stochastic rates from heterogeneous snapshots of particle positions
Christopher E Miles
Scott A. McKinley
Fangyuan Ding
R. Lehoucq
30
6
0
08 Nov 2023
Generative learning for nonlinear dynamics
Generative learning for nonlinear dynamics
William Gilpin
AI4CEPINN
126
27
0
07 Nov 2023
Understanding Tool Discovery and Tool Innovation Using Active Inference
Understanding Tool Discovery and Tool Innovation Using Active Inference
Poppy Collis
Paul F Kinghorn
Christopher L. Buckley
49
0
0
07 Nov 2023
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in
  Gaussian Mixture Models
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
77
0
0
07 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
Riemannian Laplace Approximation with the Fisher Metric
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
Mark Girolami
Arto Klami
111
3
0
05 Nov 2023
Forward $χ^2$ Divergence Based Variational Importance Sampling
Forward χ2χ^2χ2 Divergence Based Variational Importance Sampling
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
72
2
0
04 Nov 2023
Uncertainty Quantification of Deep Learning for Spatiotemporal Data:
  Challenges and Opportunities
Uncertainty Quantification of Deep Learning for Spatiotemporal Data: Challenges and Opportunities
Wenchong He
Zhe Jiang
110
1
0
04 Nov 2023
Variational Inference for Sparse Poisson Regression
Variational Inference for Sparse Poisson Regression
Mitra Kharabati
Morteza Amini
129
1
0
02 Nov 2023
ABC-based Forecasting in State Space Models
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
57
1
0
02 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
68
2
0
01 Nov 2023
Diffusion models for probabilistic programming
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
88
1
0
01 Nov 2023
Variational non-Bayesian inference of the Probability Density Function
  in the Wiener Algebra
Variational non-Bayesian inference of the Probability Density Function in the Wiener Algebra
U. J. Choi
Kyung Soo Rim
24
0
0
01 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient
  Flows
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
83
8
0
31 Oct 2023
On Feynman--Kac training of partial Bayesian neural networks
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schön
Jens Sjölund
76
0
0
30 Oct 2023
Previous
123...789...353637
Next