ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Bayesian Inference Forgetting
Bayesian Inference Forgetting
Shaopeng Fu
Fengxiang He
Yue Xu
Dacheng Tao
MU
88
12
0
16 Jan 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
161
7
0
15 Jan 2021
PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
PAC-Bayes Bounds on Variational Tempered Posteriors for Markov Models
Imon Banerjee
Vinayak A. Rao
Harsha Honnappa
90
12
0
13 Jan 2021
Bayesian neural networks for weak solution of PDEs with uncertainty
  quantification
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
86
12
0
13 Jan 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
109
32
0
11 Jan 2021
Block-Term Tensor Decomposition Model Selection and Computation: The
  Bayesian Way
Block-Term Tensor Decomposition Model Selection and Computation: The Bayesian Way
Paris V. Giampouras
A. Rontogiannis
Eleftherios Kofidis
94
18
0
08 Jan 2021
BDNNSurv: Bayesian deep neural networks for survival analysis using
  pseudo values
BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values
Dai Feng
Lili Zhao
48
32
0
07 Jan 2021
Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome
  Data
Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data
Wangshu Tu
Sanjeena Subedi
40
4
0
06 Jan 2021
A Multilayer Correlated Topic Model
A Multilayer Correlated Topic Model
Ye Tian
24
1
0
02 Jan 2021
Minimum Excess Risk in Bayesian Learning
Minimum Excess Risk in Bayesian Learning
Aolin Xu
Maxim Raginsky
427
40
0
29 Dec 2020
Exploiting Chain Rule and Bayes' Theorem to Compare Probability
  Distributions
Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions
Huangjie Zheng
Mingyuan Zhou
OT
163
29
0
28 Dec 2020
Variational Transport: A Convergent Particle-BasedAlgorithm for
  Distributional Optimization
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
91
5
0
21 Dec 2020
Recent advances in deep learning theory
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
132
51
0
20 Dec 2020
Bayesian unsupervised learning reveals hidden structure in concentrated
  electrolytes
Bayesian unsupervised learning reveals hidden structure in concentrated electrolytes
Penelope Jones
Fabian Coupette
A. Härtel
A. Lee
21
9
0
19 Dec 2020
Labels Are Not Perfect: Inferring Spatial Uncertainty in Object
  Detection
Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection
Di Feng
Zining Wang
Yiyang Zhou
Lars Rosenbaum
Fabian Timm
Klaus C. J. Dietmayer
Masayoshi Tomizuka
Wei Zhan
65
23
0
18 Dec 2020
Learning to Solve AC Optimal Power Flow by Differentiating through
  Holomorphic Embeddings
Learning to Solve AC Optimal Power Flow by Differentiating through Holomorphic Embeddings
Henning Lange
Bingqing Chen
Mario Berges
S. Kar
53
6
0
16 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
172
127
0
16 Dec 2020
Variational State and Parameter Estimation
Variational State and Parameter Estimation
Jarrad Courts
J. Hendriks
A. Wills
Thomas B. Schon
B. Ninness
48
10
0
14 Dec 2020
Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
  Distribution Predictions
Bayes DistNet -- A Robust Neural Network for Algorithm Runtime Distribution Predictions
Jake E. Tuero
M. Buro
OOD
55
0
0
14 Dec 2020
Uncertainty Estimation in Deep Neural Networks for Point Cloud
  Segmentation in Factory Planning
Uncertainty Estimation in Deep Neural Networks for Point Cloud Segmentation in Factory Planning
Christina Petschnigg
Juergen Pilz
UQCV3DPC
43
7
0
13 Dec 2020
Gauge equivariant neural networks for quantum lattice gauge theories
Gauge equivariant neural networks for quantum lattice gauge theories
Di Luo
Giuseppe Carleo
B. Clark
J. Stokes
71
48
0
09 Dec 2020
Variational System Identification for Nonlinear State-Space Models
Variational System Identification for Nonlinear State-Space Models
Jarrad Courts
A. Wills
Thomas B. Schon
B. Ninness
64
5
0
08 Dec 2020
Variational Autoencoders for Learning Nonlinear Dynamics of Physical
  Systems
Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems
Ryan Lopez
P. Atzberger
DRLAI4CE
60
13
0
07 Dec 2020
Forecasting: theory and practice
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
138
382
0
04 Dec 2020
Efficient semidefinite-programming-based inference for binary and
  multi-class MRFs
Efficient semidefinite-programming-based inference for binary and multi-class MRFs
Chirag Pabbaraju
Po-Wei Wang
J. Zico Kolter
41
3
0
04 Dec 2020
A similarity-based Bayesian mixture-of-experts model
A similarity-based Bayesian mixture-of-experts model
Tianfang Zhang
R. Bokrantz
Jimmy Olsson
45
3
0
03 Dec 2020
On Variational Inference for User Modeling in Attribute-Driven
  Collaborative Filtering
On Variational Inference for User Modeling in Attribute-Driven Collaborative Filtering
Venugopal Mani
Ramasubramanian Balasubramanian
Sushant Kumar
Abhinav Mathur
Kannan Achan
CMLBDLEgoV
122
1
0
02 Dec 2020
Deep dynamic modeling with just two time points: Can we still allow for
  individual trajectories?
Deep dynamic modeling with just two time points: Can we still allow for individual trajectories?
Maren Hackenberg
Philipp Harms
Michelle Pfaffenlehner
Astrid Pechmann
Janbernd Kirschner
Thorsten Schmidt
Harald Binder
45
4
0
01 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing
  Flows
Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Cheng Zhang
BDL
75
27
0
01 Dec 2020
A Framework for Authorial Clustering of Shorter Texts in Latent Semantic
  Spaces
A Framework for Authorial Clustering of Shorter Texts in Latent Semantic Spaces
Rafi Trad
M. Spiliopoulou
16
2
0
30 Nov 2020
Latent Template Induction with Gumbel-CRFs
Latent Template Induction with Gumbel-CRFs
Yao Fu
Chuanqi Tan
Bin Bi
Mosha Chen
Yansong Feng
Alexander M. Rush
BDL
72
13
0
29 Nov 2020
Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval
Bayesian Triplet Loss: Uncertainty Quantification in Image Retrieval
Frederik Warburg
Martin Jørgensen
Javier Civera
Søren Hauberg
UQCV
99
37
0
25 Nov 2020
Use of Student's t-Distribution for the Latent Layer in a Coupled
  Variational Autoencoder
Use of Student's t-Distribution for the Latent Layer in a Coupled Variational Autoencoder
Kevin R. Chen
Daniel Svoboda
Kenric P. Nelson
DRL
20
2
0
21 Nov 2020
Understanding Variational Inference in Function-Space
Understanding Variational Inference in Function-Space
David R. Burt
Sebastian W. Ober
Adrià Garriga-Alonso
Mark van der Wilk
BDL
71
44
0
18 Nov 2020
Optimized Auxiliary Particle Filters: adapting mixture proposals via
  convex optimization
Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization
Nicola Branchini
Victor Elvira
92
19
0
18 Nov 2020
Efficient Variational Inference for Sparse Deep Learning with
  Theoretical Guarantee
Efficient Variational Inference for Sparse Deep Learning with Theoretical Guarantee
Jincheng Bai
Qifan Song
Guang Cheng
BDL
60
41
0
15 Nov 2020
Clustering microbiome data using mixtures of logistic normal multinomial
  models
Clustering microbiome data using mixtures of logistic normal multinomial models
Yuan Fang
Sanjeena Subedi
28
10
0
12 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
375
1,952
0
12 Nov 2020
A Nonconvex Framework for Structured Dynamic Covariance Recovery
A Nonconvex Framework for Structured Dynamic Covariance Recovery
Katherine Tsai
Mladen Kolar
Oluwasanmi Koyejo
62
3
0
11 Nov 2020
On the Consistency of a Random Forest Algorithm in the Presence of
  Missing Entries
On the Consistency of a Random Forest Algorithm in the Presence of Missing Entries
Irving Gómez-Méndez
Émilien Joly
73
2
0
10 Nov 2020
Reward Conditioned Neural Movement Primitives for Population Based
  Variational Policy Optimization
Reward Conditioned Neural Movement Primitives for Population Based Variational Policy Optimization
M. Akbulut
Utku Bozdoğan
Ahmet E. Tekden
Emre Ugur
109
5
0
09 Nov 2020
User-Dependent Neural Sequence Models for Continuous-Time Event Data
User-Dependent Neural Sequence Models for Continuous-Time Event Data
Alex Boyd
Robert Bamler
Stephan Mandt
Padhraic Smyth
39
20
0
06 Nov 2020
Quantized Variational Inference
Quantized Variational Inference
Amir Dib
50
1
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
52
5
0
29 Oct 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
102
24
0
27 Oct 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
63
75
0
27 Oct 2020
Towards Scale-Invariant Graph-related Problem Solving by Iterative
  Homogeneous Graph Neural Networks
Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks
Hao Tang
Zhiao Huang
Jiayuan Gu
Bao-Liang Lu
Hao Su
AI4CE
70
9
0
26 Oct 2020
Scalable Bayesian neural networks by layer-wise input augmentation
Scalable Bayesian neural networks by layer-wise input augmentation
Trung Trinh
Samuel Kaski
Markus Heinonen
UQCVBDL
36
3
0
26 Oct 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
50
0
0
26 Oct 2020
Previous
123...232425...353637
Next