ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows
v1v2v3v4v5v6 (latest)

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRLBDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 2,268 papers shown
Title
Data Selection for training Semantic Segmentation CNNs with
  cross-dataset weak supervision
Data Selection for training Semantic Segmentation CNNs with cross-dataset weak supervision
Panagiotis Meletis
Rob Romijnders
Gijs Dubbelman
51
4
0
16 Jul 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
Gabriel Loaiza-Ganem
John P. Cunningham
DRL
128
84
0
16 Jul 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
101
599
0
10 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
80
20
0
10 Jul 2019
Tails of Lipschitz Triangular Flows
Tails of Lipschitz Triangular Flows
P. Jaini
I. Kobyzev
Yaoliang Yu
Marcus A. Brubaker
69
6
0
10 Jul 2019
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Copula & Marginal Flows: Disentangling the Marginal from its Joint
Magnus Wiese
R. Knobloch
R. Korn
DRL
49
21
0
07 Jul 2019
Universal audio synthesizer control with normalizing flows
Universal audio synthesizer control with normalizing flows
P. Esling
Naotake Masuda
Adrien Bardet
R. Despres
Axel Chemla-Romeu-Santos
83
45
0
01 Jul 2019
Coupling techniques for nonlinear ensemble filtering
Coupling techniques for nonlinear ensemble filtering
Alessio Spantini
Ricardo Baptista
Youssef Marzouk
115
76
0
30 Jun 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Jinwei Gu
Ming-Yuan Liu
Serge J. Belongie
Bharath Hariharan
3DPC
156
672
0
28 Jun 2019
Curriculum Learning for Deep Generative Models with Clustering
Curriculum Learning for Deep Generative Models with Clustering
Deli Zhao
Jiapeng Zhu
Zhenfang Guo
Bo Zhang
GNN
85
2
0
27 Jun 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
101
416
0
25 Jun 2019
Compound Probabilistic Context-Free Grammars for Grammar Induction
Compound Probabilistic Context-Free Grammars for Grammar Induction
Yoon Kim
Chris Dyer
Alexander M. Rush
116
153
0
24 Jun 2019
SampleFix: Learning to Generate Functionally Diverse Fixes
SampleFix: Learning to Generate Functionally Diverse Fixes
Hossein Hajipour
Apratim Bhattacharyya
Cristian-Alexandru Staicu
Mario Fritz
40
5
0
24 Jun 2019
Compositionally-Warped Gaussian Processes
Compositionally-Warped Gaussian Processes
Gonzalo Rios
Felipe A. Tobar
52
43
0
23 Jun 2019
Variational Sequential Labelers for Semi-Supervised Learning
Variational Sequential Labelers for Semi-Supervised Learning
Mingda Chen
Qingming Tang
Karen Livescu
Kevin Gimpel
SSLDRLBDLVLM
82
39
0
23 Jun 2019
Learning Belief Representations for Imitation Learning in POMDPs
Learning Belief Representations for Imitation Learning in POMDPs
Tanmay Gangwani
Joel Lehman
Qiang Liu
Jian Peng
59
37
0
22 Jun 2019
Black-Box Inference for Non-Linear Latent Force Models
Black-Box Inference for Non-Linear Latent Force Models
W. Ward
Tom Ryder
D. Prangle
Mauricio A. Alvarez
DRL
80
14
0
21 Jun 2019
A Closer Look at Double Backpropagation
A Closer Look at Double Backpropagation
Christian Etmann
ODL
39
11
0
16 Jun 2019
Reweighted Expectation Maximization
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLMDRL
70
17
0
13 Jun 2019
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders
Natasa Tagasovska
Damien Ackerer
Thibault Vatter
TPM
74
29
0
12 Jun 2019
GluonTS: Probabilistic Time Series Models in Python
GluonTS: Probabilistic Time Series Models in Python
A. Alexandrov
Konstantinos Benidis
Michael Bohlke-Schneider
Valentin Flunkert
Jan Gasthaus
...
David Salinas
J. Schulz
Lorenzo Stella
Ali Caner Türkmen
Bernie Wang
BDLAI4TS
75
115
0
12 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
80
40
0
11 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
233
778
0
10 Jun 2019
Effective Use of Variational Embedding Capacity in Expressive End-to-End
  Speech Synthesis
Effective Use of Variational Embedding Capacity in Expressive End-to-End Speech Synthesis
Eric Battenberg
Soroosh Mariooryad
Daisy Stanton
RJ Skerry-Ryan
Matt Shannon
David Kao
Tom Bagby
BDL
86
45
0
08 Jun 2019
Improving Exploration in Soft-Actor-Critic with Normalizing Flows
  Policies
Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies
Patrick Nadeem Ward
Ariella Smofsky
A. Bose
79
58
0
06 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDLTPMDRL
179
378
0
06 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
223
2,385
0
06 Jun 2019
Combining Generative and Discriminative Models for Hybrid Inference
Combining Generative and Discriminative Models for Hybrid Inference
Victor Garcia Satorras
Zeynep Akata
Max Welling
94
57
0
06 Jun 2019
Image Synthesis with a Single (Robust) Classifier
Image Synthesis with a Single (Robust) Classifier
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Madry
AAML
64
34
0
06 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
104
58
0
05 Jun 2019
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
81
14
0
04 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
59
32
0
04 Jun 2019
Understanding the Limitations of Conditional Generative Models
Understanding the Limitations of Conditional Generative Models
Ethan Fetaya
J. Jacobsen
Will Grathwohl
R. Zemel
96
54
0
04 Jun 2019
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio
  voice conversion
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion
Joan Serrà
Santiago Pascual
Carlos Segura
CVBM
76
85
0
03 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
206
1,832
0
02 Jun 2019
Greedy inference with structure-exploiting lazy maps
Greedy inference with structure-exploiting lazy maps
Michael C. Brennan
Daniele Bigoni
O. Zahm
Alessio Spantini
Youssef Marzouk
96
13
0
31 May 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
84
14
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDLDRL
82
73
0
30 May 2019
Graph Normalizing Flows
Graph Normalizing Flows
Jenny Liu
Aviral Kumar
Jimmy Ba
J. Kiros
Kevin Swersky
BDLGNNAI4CE
93
165
0
30 May 2019
AlignFlow: Cycle Consistent Learning from Multiple Domains via
  Normalizing Flows
AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows
Aditya Grover
Christopher Chute
Rui Shu
Zhangjie Cao
Stefano Ermon
OODDRL
59
67
0
30 May 2019
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large
  datasets
Replica-exchange Nosé-Hoover dynamics for Bayesian learning on large datasets
Rui Luo
Qiang Zhang
Yaodong Yang
Jun Wang
BDL
71
3
0
29 May 2019
Generative Parameter Sampler For Scalable Uncertainty Quantification
Generative Parameter Sampler For Scalable Uncertainty Quantification
Minsuk Shin
Young Lee
Jun S. Liu
55
0
0
28 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
126
193
0
28 May 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
78
8
0
27 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
110
16
0
27 May 2019
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural
  networks
ODE2^22VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDLDRL
100
88
0
27 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
98
45
0
25 May 2019
The Variational InfoMax AutoEncoder
The Variational InfoMax AutoEncoder
Vincenzo Crescimanna
Bruce P. Graham
DRL
66
3
0
25 May 2019
DIVA: Domain Invariant Variational Autoencoders
DIVA: Domain Invariant Variational Autoencoders
Maximilian Ilse
Jakub M. Tomczak
Christos Louizos
Max Welling
DRLOOD
89
206
0
24 May 2019
Previous
123...394041...444546
Next