ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.11600
14
188

GraphNVP: An Invertible Flow Model for Generating Molecular Graphs

28 May 2019
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
    BDL
ArXivPDFHTML
Abstract

We propose GraphNVP, the first invertible, normalizing flow-based molecular graph generation model. We decompose the generation of a graph into two steps: generation of (i) an adjacency tensor and (ii) node attributes. This decomposition yields the exact likelihood maximization on graph-structured data, combined with two novel reversible flows. We empirically demonstrate that our model efficiently generates valid molecular graphs with almost no duplicated molecules. In addition, we observe that the learned latent space can be used to generate molecules with desired chemical properties.

View on arXiv
Comments on this paper