Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.05770
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Variational Inference with Normalizing Flows
21 May 2015
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference with Normalizing Flows"
50 / 2,270 papers shown
Title
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
131
2
0
21 Nov 2021
Learn Quasi-stationary Distributions of Finite State Markov Chain
Zhiqiang Cai
Ling Lin
Xiang Zhou
BDL
OffRL
26
1
0
19 Nov 2021
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
119
241
0
17 Nov 2021
IKFlow: Generating Diverse Inverse Kinematics Solutions
Barrett Ames
Jeremy Morgan
George Konidaris
83
36
0
17 Nov 2021
Normalizing flows for atomic solids
Peter Wirnsberger
George Papamakarios
Borja Ibarz
S. Racanière
Andy Ballard
Alexander Pritzel
Charles Blundell
80
41
0
16 Nov 2021
Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation
William J. McNally
Kanav Vats
Alexander Wong
J. McPhee
103
68
0
16 Nov 2021
ELBD: Efficient score algorithm for feature selection on latent variables of VAE
Yiran Dong
Chuanhou Gao
47
1
0
15 Nov 2021
Continual Learning via Local Module Composition
O. Ostapenko
Pau Rodríguez López
Massimo Caccia
Laurent Charlin
KELM
CLL
119
67
0
15 Nov 2021
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
Jiawei Yu1
Ye Zheng
Xiang Wang
Wei Li
Yushuang Wu
Rui Zhao
Liwei Wu
81
315
0
15 Nov 2021
Learning Neural Models for Continuous-Time Sequences
Vinayak Gupta
AI4TS
22
1
0
13 Nov 2021
S3RP: Self-Supervised Super-Resolution and Prediction for Advection-Diffusion Process
Chulin Wang
K. Yeo
Xiao Jin
Andrés Codas
L. Klein
Bruce Elmegreen
DiffM
82
12
0
08 Nov 2021
NeurInt : Learning to Interpolate through Neural ODEs
Avinandan Bose
Aniket Das
Yatin Dandi
P. Rai
DiffM
DRL
55
0
0
07 Nov 2021
Normalizing Flow as a Flexible Fidelity Objective for Photo-Realistic Super-resolution
Andreas Lugmayr
Martin Danelljan
Feng Yu
Luc Van Gool
Radu Timofte
57
15
0
05 Nov 2021
Variational Inference with Holder Bounds
Junya Chen
Danni Lu
Zidi Xiu
Ke Bai
Lawrence Carin
Chenyang Tao
54
6
0
04 Nov 2021
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg
Aram Galstyan
80
15
0
03 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
128
61
0
03 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
63
98
0
02 Nov 2021
Uncertainty quantification for ptychography using normalizing flows
Agnimitra Dasgupta
Z. Di
AI4CE
69
5
0
01 Nov 2021
PIE: Pseudo-Invertible Encoder
J. Beitler
Ivan Sosnovik
A. Smeulders
51
10
0
31 Oct 2021
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
96
33
0
29 Oct 2021
Probabilistic Autoencoder using Fisher Information
J. Zacherl
Philipp Frank
T. Ensslin
EgoV
AI4CE
63
2
0
28 Oct 2021
Validation Methods for Energy Time Series Scenarios from Deep Generative Models
Eike Cramer
L. R. Gorjão
Alexander Mitsos
B. Schäfer
D. Witthaut
Manuel Dahmen
43
16
0
27 Oct 2021
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
120
89
0
26 Oct 2021
Non-Gaussian Gaussian Processes for Few-Shot Regression
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
92
19
0
26 Oct 2021
Sinusoidal Flow: A Fast Invertible Autoregressive Flow
Yumou Wei
TPM
43
0
0
26 Oct 2021
A Dynamical System Perspective for Lipschitz Neural Networks
Laurent Meunier
Blaise Delattre
Alexandre Araujo
A. Allauzen
130
56
0
25 Oct 2021
Generative Networks for Precision Enthusiasts
A. Butter
Theo Heimel
Sander Hummerich
Tobias Krebs
Tilman Plehn
Armand Rousselot
Sophia Vent
AI4CE
82
60
0
22 Oct 2021
Learning Stable Vector Fields on Lie Groups
Julen Urain
Davide Tateo
Jan Peters
84
18
0
22 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
311
956
0
21 Oct 2021
Equivariant Finite Normalizing Flows
A. Bose
Marcus A. Brubaker
I. Kobyzev
DRL
104
10
0
16 Oct 2021
Learning the Koopman Eigendecomposition: A Diffeomorphic Approach
Petar Bevanda
Johannes Kirmayr
Stefan Sosnowski
Sandra Hirche
114
9
0
15 Oct 2021
Function-space Inference with Sparse Implicit Processes
Simón Rodríguez Santana
B. Zaldívar
Daniel Hernández-Lobato
63
12
0
14 Oct 2021
Diffusion Normalizing Flow
Qinsheng Zhang
Yongxin Chen
DiffM
112
94
0
14 Oct 2021
Bundle Networks: Fiber Bundles, Local Trivializations, and a Generative Approach to Exploring Many-to-one Maps
Nico Courts
Henry Kvinge
40
4
0
13 Oct 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
73
45
0
13 Oct 2021
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation
Shidi Li
Miaomiao Liu
Christian J. Walder
3DPC
117
29
0
13 Oct 2021
The Deep Generative Decoder: MAP estimation of representations improves modeling of single-cell RNA data
Viktoria Schuster
A. Krogh
77
4
0
13 Oct 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
139
43
0
13 Oct 2021
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDL
TPM
AI4CE
109
4
0
12 Oct 2021
Exchangeability-Aware Sum-Product Networks
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
TPM
46
3
0
11 Oct 2021
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
97
21
0
10 Oct 2021
Braxlines: Fast and Interactive Toolkit for RL-driven Behavior Engineering beyond Reward Maximization
S. Gu
Manfred Diaz
Daniel Freeman
Hiroki Furuta
Seyed Kamyar Seyed Ghasemipour
Anton Raichuk
Byron David
Erik Frey
Erwin Coumans
Olivier Bachem
82
14
0
10 Oct 2021
An In-depth Summary of Recent Artificial Intelligence Applications in Drug Design
Yi Zhang
AI4CE
80
6
0
10 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
94
22
0
09 Oct 2021
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
59
11
0
08 Oct 2021
PRRS Outbreak Prediction via Deep Switching Auto-Regressive Factorization Modeling
M. Shamsabardeh
Bahar Azari
Beatriz Martínez-López
55
1
0
07 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
150
55
0
06 Oct 2021
Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
Marco Rudolph
Tom Wehrbein
Bodo Rosenhahn
Bastian Wandt
UQCV
140
222
0
06 Oct 2021
Knothe-Rosenblatt transport for Unsupervised Domain Adaptation
Aladin Virmaux
Illyyne Saffar
Jianfeng Zhang
Balázs Kégl
OOD
41
0
0
06 Oct 2021
DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation
Gwanghyun Kim
Taesung Kwon
Jong Chul Ye
DiffM
247
657
0
06 Oct 2021
Previous
1
2
3
...
26
27
28
...
44
45
46
Next