ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 933 papers shown
Title
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
186
0
12 Jan 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
75
32
0
11 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
243
0
09 Jan 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Flow-based Generative Models for Learning Manifold to Manifold Mappings
Xingjian Zhen
Rudrasis Chakraborty
Liu Yang
Vikas Singh
DRL
MedIm
31
9
0
18 Dec 2020
Model-Based Deep Learning
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
33
318
0
15 Dec 2020
Calibrated Adaptive Probabilistic ODE Solvers
Calibrated Adaptive Probabilistic ODE Solvers
Nathanael Bosch
Philipp Hennig
Filip Tronarp
41
29
0
15 Dec 2020
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
ChartPointFlow for Topology-Aware 3D Point Cloud Generation
ChartPointFlow for Topology-Aware 3D Point Cloud Generation
Takumi Kimura
Takashi Matsubara
K. Uehara
3DPC
31
8
0
04 Dec 2020
Generative Layout Modeling using Constraint Graphs
Generative Layout Modeling using Constraint Graphs
W. Para
Paul Guerrero
Tom Kelly
Leonidas J. Guibas
Peter Wonka
31
69
0
26 Nov 2020
Regularization with Latent Space Virtual Adversarial Training
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Variational Monocular Depth Estimation for Reliability Prediction
Variational Monocular Depth Estimation for Reliability Prediction
Noriaki Hirose
S. Taguchi
Keisuke Kawano
Satoshi Koide
MDE
34
4
0
24 Nov 2020
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
22
38
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
24
98
0
06 Nov 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
36
34
0
03 Nov 2020
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Generative Temporal Difference Learning for Infinite-Horizon Prediction
Michael Janner
Igor Mordatch
Sergey Levine
AI4CE
20
34
0
27 Oct 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
25
74
0
27 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
26
25
0
26 Oct 2020
ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
  Normalizing Flows
ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by Normalizing Flows
Julen Urain
M. Ginesi
Davide Tateo
Jan Peters
AI4CE
21
57
0
25 Oct 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
27
122
0
24 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
NU-GAN: High resolution neural upsampling with GAN
NU-GAN: High resolution neural upsampling with GAN
Rithesh Kumar
Kundan Kumar
Vicki Anand
Yoshua Bengio
Aaron Courville
27
25
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
21
7
0
20 Oct 2020
Probabilistic Character Motion Synthesis using a Hierarchical Deep
  Latent Variable Model
Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model
Saeed Ghorbani
C. Wloka
Ali Etemad
M. Brubaker
N. Troje
3DV
41
31
0
20 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
112
46
0
19 Oct 2020
Orbital MCMC
Orbital MCMC
Kirill Neklyudov
Max Welling
39
7
0
15 Oct 2020
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program
  Analysis
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis
Yicheng Luo
A. Filieri
Yuanshuo Zhou
19
5
0
10 Oct 2020
Information Theory Measures via Multidimensional Gaussianization
Information Theory Measures via Multidimensional Gaussianization
Valero Laparra
J. E. Johnson
Gustau Camps-Valls
Raúl Santos-Rodríguez
Jesús Malo
38
11
0
08 Oct 2020
Representing Point Clouds with Generative Conditional Invertible Flow
  Networks
Representing Point Clouds with Generative Conditional Invertible Flow Networks
Michal Stypulkowski
Kacper Kania
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
J. Chorowski
3DPC
31
4
0
07 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
7,024
0
06 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of
  Neural Text Classifiers
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
17
63
0
01 Oct 2020
Variational Disentanglement for Rare Event Modeling
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
32
6
0
17 Sep 2020
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals
Saloni Dash
V. Balasubramanian
Amit Sharma
CML
27
65
0
17 Sep 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
Maja Pantic
Yannis Panagakis
GAN
DRL
24
17
0
09 Sep 2020
Quasi-symplectic Langevin Variational Autoencoder
Quasi-symplectic Langevin Variational Autoencoder
Zihao Wang
H. Delingette
BDL
DRL
15
4
0
02 Sep 2020
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Low-rank Characteristic Tensor Density Estimation Part I: Foundations
Magda Amiridi
Nikos Kargas
N. Sidiropoulos
19
19
0
27 Aug 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
44
48
0
24 Aug 2020
TNT: Target-driveN Trajectory Prediction
TNT: Target-driveN Trajectory Prediction
Hang Zhao
Jiyang Gao
Tian-Shing Lan
Chen Sun
Benjamin Sapp
...
Yi Shen
Yuning Chai
Cordelia Schmid
Congcong Li
Dragomir Anguelov
57
537
0
19 Aug 2020
Audio Dequantization for High Fidelity Audio Generation in Flow-based
  Neural Vocoder
Audio Dequantization for High Fidelity Audio Generation in Flow-based Neural Vocoder
Hyun-Wook Yoon
Sang-Hoon Lee
Hyeong-Rae Noh
Seong-Whan Lee
20
11
0
16 Aug 2020
Learning Gradient Fields for Shape Generation
Learning Gradient Fields for Shape Generation
Ruojin Cai
Guandao Yang
Hadar Averbuch-Elor
Jinwei Gu
Serge J. Belongie
Noah Snavely
B. Hariharan
3DPC
19
280
0
14 Aug 2020
Generative Adversarial Networks for Image and Video Synthesis:
  Algorithms and Applications
Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications
Xuan Li
Xun Huang
Jiahui Yu
Ting-Chun Wang
Arun Mallya
GAN
30
153
0
06 Aug 2020
Geometrically Enriched Latent Spaces
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Previous
123...121314...171819
Next