ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 936 papers shown
Title
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
36
81
0
09 Jun 2021
Bayesian Bellman Operators
Bayesian Bellman Operators
M. Fellows
Kristian Hartikainen
Shimon Whiteson
OffRL
42
15
0
09 Jun 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
49
312
0
08 Jun 2021
On Memorization in Probabilistic Deep Generative Models
On Memorization in Probabilistic Deep Generative Models
G. V. D. Burg
Christopher K. I. Williams
TDI
25
59
0
06 Jun 2021
On Training Sample Memorization: Lessons from Benchmarking Generative
  Modeling with a Large-scale Competition
On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition
C. Bai
Hsuan-Tien Lin
Colin Raffel
Wendy Kan
18
34
0
06 Jun 2021
Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
  Progression
Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression
Zhaozhi Qian
W. Zame
L. Fleuren
Paul Elbers
M. Schaar
OOD
22
53
0
05 Jun 2021
Hierarchical Video Generation for Complex Data
Hierarchical Video Generation for Complex Data
Lluis Castrejon
Nicolas Ballas
Aaron Courville
VGen
22
4
0
04 Jun 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
31
1
0
03 Jun 2021
Latent Space Refinement for Deep Generative Models
Latent Space Refinement for Deep Generative Models
R. Winterhalder
Marco Bellagente
Benjamin Nachman
BDL
GAN
DRL
DiffM
20
27
0
01 Jun 2021
Fourier Space Losses for Efficient Perceptual Image Super-Resolution
Fourier Space Losses for Efficient Perceptual Image Super-Resolution
Dario Fuoli
Luc Van Gool
Radu Timofte
22
112
0
01 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
53
0
01 Jun 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
23
0
0
01 Jun 2021
Hybrid Generative Models for Two-Dimensional Datasets
Hybrid Generative Models for Two-Dimensional Datasets
Hoda Shajari
Jaemoon Lee
Sanjay Ranka
Anand Rangarajan
MedIm
24
0
0
01 Jun 2021
Geometric variational inference
Geometric variational inference
Philipp Frank
R. Leike
T. Ensslin
45
22
0
21 May 2021
Variational Gaussian Topic Model with Invertible Neural Projections
Variational Gaussian Topic Model with Invertible Neural Projections
Rui Wang
Deyu Zhou
Yuxuan Xiong
Haiping Huang
BDL
27
3
0
21 May 2021
E(n) Equivariant Normalizing Flows
E(n) Equivariant Normalizing Flows
Victor Garcia Satorras
Emiel Hoogeboom
F. Fuchs
Ingmar Posner
Max Welling
BDL
37
170
0
19 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
38
124
0
14 May 2021
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech
Vadim Popov
Ivan Vovk
Vladimir Gogoryan
Tasnima Sadekova
Mikhail Kudinov
DiffM
61
515
0
13 May 2021
Generative Adversarial Networks (GANs) in Networking: A Comprehensive
  Survey & Evaluation
Generative Adversarial Networks (GANs) in Networking: A Comprehensive Survey & Evaluation
Hojjat Navidan
P. Moshiri
M. Nabati
Reza Shahbazian
S. Ghorashi
V. Shah-Mansouri
David Windridge
15
84
0
10 May 2021
COMISR: Compression-Informed Video Super-Resolution
COMISR: Compression-Informed Video Super-Resolution
Yinxiao Li
Pengchong Jin
Feng Yang
Ce Liu
Ming-Hsuan Yang
P. Milanfar
SupR
34
38
0
04 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with
  Many Symbols
PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols
Aaron Courville
Yanpeng Zhao
Kewei Tu
23
22
0
28 Apr 2021
From Human Explanation to Model Interpretability: A Framework Based on
  Weight of Evidence
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
56
28
0
27 Apr 2021
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
Yang Liu
Zhenyue Qin
Saeed Anwar
Pan Ji
Dongwoo Kim
Sabrina Caldwell
Tom Gedeon
83
143
0
21 Apr 2021
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
Gido M. van de Ven
Zhe Li
A. Tolias
BDL
50
58
0
20 Apr 2021
Learning by example: fast reliability-aware seismic imaging with
  normalizing flows
Learning by example: fast reliability-aware seismic imaging with normalizing flows
Ali Siahkoohi
Felix J. Herrmann
OOD
29
13
0
13 Apr 2021
Understanding Event-Generation Networks via Uncertainties
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
41
55
0
09 Apr 2021
Multilevel Stein variational gradient descent with applications to
  Bayesian inverse problems
Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
Terrence Alsup
Luca Venturi
Benjamin Peherstorfer
26
5
0
05 Apr 2021
AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent
  Forecasting
AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan
Xinshuo Weng
Yanglan Ou
Kris Kitani
AI4TS
45
442
0
25 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects
  of Continuous Treatments
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
25
69
0
14 Mar 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
221
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Generating Images with Sparse Representations
Generating Images with Sparse Representations
C. Nash
Jacob Menick
Sander Dieleman
Peter W. Battaglia
33
201
0
05 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
43
297
0
03 Mar 2021
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
Felix Juefei Xu
Run Wang
Yihao Huang
Qing Guo
Lei Ma
Yang Liu
AAML
33
132
0
27 Feb 2021
A Hybrid Approximation to the Marginal Likelihood
A Hybrid Approximation to the Marginal Likelihood
Eric Chuu
D. Pati
A. Bhattacharya
19
2
0
24 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
18
25
0
22 Feb 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
30
116
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal
  Memory
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
212
81
0
16 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
45
70
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
39
33
0
12 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
43
10
0
04 Feb 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
39
178
0
02 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
190
0
01 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structures
Zichao Yan
William L. Hamilton
Mathieu Blanchette
40
2
0
01 Feb 2021
Convolutional conditional neural processes for local climate downscaling
Convolutional conditional neural processes for local climate downscaling
Anna Vaughan
Will Tebbutt
J. S. Hosking
Richard Turner
BDL
28
47
0
20 Jan 2021
Previous
123...111213...171819
Next