Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
v1
v2
v3 (latest)
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 493 papers shown
Title
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
72
81
0
28 Jul 2020
Accounting for Unobserved Confounding in Domain Generalization
Alexis Bellot
M. Schaar
CML
OOD
91
23
0
21 Jul 2020
Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective
Ruixiang Zhang
Masanori Koyama
Katsuhiko Ishiguro
CML
31
6
0
21 Jul 2020
Robustness to Spurious Correlations via Human Annotations
Megha Srivastava
Tatsunori Hashimoto
Percy Liang
CML
OOD
55
90
0
13 Jul 2020
Causal Feature Selection via Orthogonal Search
Ashkan Soleymani
Anant Raj
Stefan Bauer
Bernhard Schölkopf
M. Besserve
CML
79
17
0
06 Jul 2020
Differentiable Causal Discovery from Interventional Data
P. Brouillard
Sébastien Lachapelle
Alexandre Lacoste
Simon Lacoste-Julien
Alexandre Drouin
CML
78
191
0
03 Jul 2020
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
108
1,159
0
02 Jul 2020
Causal Discovery in Physical Systems from Videos
Yunzhu Li
Antonio Torralba
Anima Anandkumar
Dieter Fox
Animesh Garg
CML
124
104
0
01 Jul 2020
Causality Learning: A New Perspective for Interpretable Machine Learning
Guandong Xu
Tri Dung Duong
Q. Li
S. Liu
Xianzhi Wang
XAI
OOD
CML
55
52
0
27 Jun 2020
From Predictions to Decisions: Using Lookahead Regularization
Nir Rosenfeld
Sophie Hilgard
S. Ravindranath
David C. Parkes
44
21
0
20 Jun 2020
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
61
30
0
20 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
90
85
0
17 Jun 2020
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
172
33
0
13 Jun 2020
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
94
337
0
12 Jun 2020
Conformal Inference of Counterfactuals and Individual Treatment Effects
Lihua Lei
Emmanuel J. Candès
CML
174
195
0
11 Jun 2020
Active Invariant Causal Prediction: Experiment Selection through Stability
Juan L. Gamella
C. Heinze-Deml
OOD
61
46
0
10 Jun 2020
Stable Prediction via Leveraging Seed Variable
Kun Kuang
Yangqiu Song
Peng Cui
Yue Liu
Jianrong Tao
Yueting Zhuang
Leilei Gan
OOD
CML
38
5
0
09 Jun 2020
Balance-Subsampled Stable Prediction
Kun Kuang
Hengtao Zhang
Leilei Gan
Yueting Zhuang
Aijun Zhang
OOD
65
3
0
08 Jun 2020
Invariant Policy Optimization: Towards Stronger Generalization in Reinforcement Learning
Anoopkumar Sonar
Vincent Pacelli
Anirudha Majumdar
111
54
0
01 Jun 2020
Towards intervention-centric causal reasoning in learning agents
B. Lansdell
LRM
CML
16
0
0
26 May 2020
An Analysis of the Adaptation Speed of Causal Models
Rémi Le Priol
Reza Babanezhad Harikandeh
Yoshua Bengio
Simon Lacoste-Julien
CML
44
14
0
18 May 2020
Distributional robustness of K-class estimators and the PULSE
M. E. Jakobsen
J. Peters
OOD
54
29
0
07 May 2020
Selecting Data Augmentation for Simulating Interventions
Maximilian Ilse
Jakub M. Tomczak
Patrick Forré
OOD
CML
70
18
0
04 May 2020
Constraint-Based Causal Discovery using Partial Ancestral Graphs in the presence of Cycles
Joris M. Mooij
Tom Claassen
66
42
0
01 May 2020
Representation Bayesian Risk Decompositions and Multi-Source Domain Adaptation
Xi Wu
Yang Guo
Jiefeng Chen
Yingyu Liang
S. Jha
P. Chalasani
OOD
UQCV
71
7
0
22 Apr 2020
Causal network learning with non-invertible functional relationships
Bingling Wang
Qing Zhou
CML
34
7
0
20 Apr 2020
Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
SSL
CML
93
119
0
20 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
151
45
0
18 Apr 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
225
2,066
0
16 Apr 2020
An Empirical Study of Invariant Risk Minimization
Yo Joong Choe
Jiyeon Ham
Kyubyong Park
OOD
56
50
0
10 Apr 2020
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
121
144
0
12 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
331
944
0
02 Mar 2020
Unshuffling Data for Improved Generalization
Damien Teney
Ehsan Abbasnejad
Anton Van Den Hengel
OOD
77
78
0
27 Feb 2020
I-SPEC: An End-to-End Framework for Learning Transportable, Shift-Stable Models
Adarsh Subbaswamy
Suchi Saria
OOD
71
14
0
20 Feb 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
94
252
0
11 Feb 2020
Stable Prediction with Model Misspecification and Agnostic Distribution Shift
Kun Kuang
Ruoxuan Xiong
Peng Cui
Susan Athey
Yue Liu
OOD
56
130
0
31 Jan 2020
On Constraint Definability in Tractable Probabilistic Models
I. Papantonis
Vaishak Belle
TPM
33
1
0
29 Jan 2020
Improving Model Robustness Using Causal Knowledge
T. Kyono
M. Schaar
OOD
60
12
0
27 Nov 2019
Causality for Machine Learning
Bernhard Schölkopf
CML
AI4CE
LRM
104
464
0
24 Nov 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
110
1,250
0
20 Nov 2019
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
90
97
0
17 Nov 2019
Deep causal representation learning for unsupervised domain adaptation
Raha Moraffah
Kai Shu
A. Raglin
Huan Liu
CML
OOD
91
11
0
28 Oct 2019
Causal bootstrapping
Max A. Little
Reham Badawy
CML
56
20
0
21 Oct 2019
Boosting Local Causal Discovery in High-Dimensional Expression Data
Philip Versteeg
Joris M. Mooij
CML
32
5
0
06 Oct 2019
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CML
OOD
115
170
0
02 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
98
32
0
27 Sep 2019
Causal Discovery by Kernel Intrinsic Invariance Measure
Zhitang Chen
Shengyu Zhu
Yue Liu
Tim Tse
CML
17
1
0
02 Sep 2019
Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables
Saber Salehkaleybar
AmirEmad Ghassami
Negar Kiyavash
Kun Zhang
CML
38
44
0
11 Aug 2019
Info Intervention
Heyang Gong
Zhu Ke
CML
23
0
0
24 Jul 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
223
2,247
0
05 Jul 2019
Previous
1
2
3
...
10
8
9
Next