ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.01332
  4. Cited By
Causal inference using invariant prediction: identification and
  confidence intervals
v1v2v3 (latest)

Causal inference using invariant prediction: identification and confidence intervals

6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
    OOD
ArXiv (abs)PDFHTML

Papers citing "Causal inference using invariant prediction: identification and confidence intervals"

43 / 493 papers shown
Title
Causal Regularization
Causal Regularization
M. T. Bahadori
OODCML
81
51
0
28 Jun 2019
Direct Learning with Guarantees of the Difference DAG Between Structural
  Equation Models
Direct Learning with Guarantees of the Difference DAG Between Structural Equation Models
Asish Ghoshal
Kevin Bello
Jean Honorio
CML
43
8
0
28 Jun 2019
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm
  Evaluation
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation
Ruibo Tu
Kun Zhang
Bo Christer Bertilson
Hedvig Kjellström
Cheng Zhang
OODCML
91
43
0
04 Jun 2019
A Unifying Causal Framework for Analyzing Dataset Shift-stable Learning
  Algorithms
A Unifying Causal Framework for Analyzing Dataset Shift-stable Learning Algorithms
Adarsh Subbaswamy
Bryant Chen
Suchi Saria
OOD
57
18
0
27 May 2019
Causal Discovery and Forecasting in Nonstationary Environments with
  State-Space Models
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Erdun Gao
Kun Zhang
Biwei Huang
Clark Glymour
CMLAI4TS
84
64
0
26 May 2019
Causal Discovery with General Non-Linear Relationships Using Non-Linear
  ICA
Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
R. Monti
Kun Zhang
Aapo Hyvarinen
CML
87
94
0
19 Apr 2019
Orthogonal Structure Search for Efficient Causal Discovery from Observational Data
Anant Raj
Luigi Gresele
M. Besserve
Bernhard Schölkopf
Stefan Bauer
CML
20
0
0
06 Mar 2019
Causal Discovery from Heterogeneous/Nonstationary Data with Independent
  Changes
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
Erdun Gao
Kun Zhang
Jiji Zhang
Joseph Ramsey
Ruben Sanchez-Romero
Clark Glymour
Bernhard Schölkopf
92
230
0
05 Mar 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CMLOOD
134
335
0
30 Jan 2019
Veridical Data Science
Veridical Data Science
Bin Yu
Karl Kumbier
88
168
0
23 Jan 2019
Learning stable and predictive structures in kinetic systems: Benefits
  of a causal approach
Learning stable and predictive structures in kinetic systems: Benefits of a causal approach
Niklas Pfister
Stefan Bauer
J. Peters
CML
43
41
0
28 Oct 2018
A Survey of Learning Causality with Data: Problems and Methods
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
74
168
0
25 Sep 2018
The Deconfounded Recommender: A Causal Inference Approach to
  Recommendation
The Deconfounded Recommender: A Causal Inference Approach to Recommendation
Yixin Wang
Dawen Liang
Laurent Charlin
David M. Blei
CML
79
73
0
20 Aug 2018
Switching Regression Models and Causal Inference in the Presence of
  Discrete Latent Variables
Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables
Rune Christiansen
J. Peters
CML
26
14
0
16 Aug 2018
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical
  Models
Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models
Alexander Neitz
Giambattista Parascandolo
Stefan Bauer
Bernhard Schölkopf
83
38
0
14 Aug 2018
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and
  Effect Features
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features
Julius von Kügelgen
A. Mey
Marco Loog
CMLGAN
51
14
0
20 Jul 2018
Stable Prediction across Unknown Environments
Stable Prediction across Unknown Environments
Kun Kuang
Ruoxuan Xiong
Peng Cui
Susan Athey
Bo Li
OOD
93
167
0
16 Jun 2018
Robustifying Independent Component Analysis by Adjusting for Group-Wise
  Stationary Noise
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise
Niklas Pfister
S. Weichwald
Peter Buhlmann
Bernhard Schölkopf
OODCML
58
16
0
04 Jun 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CECML
68
291
0
17 May 2018
The Hardness of Conditional Independence Testing and the Generalised
  Covariance Measure
The Hardness of Conditional Independence Testing and the Generalised Covariance Measure
Rajen Dinesh Shah
J. Peters
180
302
0
19 Apr 2018
Characterizing and Learning Equivalence Classes of Causal DAGs under
  Interventions
Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions
Karren D. Yang
Abigail Katoff
Caroline Uhler
CML
79
103
0
17 Feb 2018
Discovering Markov Blanket from Multiple interventional Datasets
Discovering Markov Blanket from Multiple interventional Datasets
Kui Yu
Lin Liu
Jiuyong Li
56
6
0
25 Jan 2018
Conditional Variance Penalties and Domain Shift Robustness
Conditional Variance Penalties and Domain Shift Robustness
C. Heinze-Deml
N. Meinshausen
OODVLM
78
4
0
31 Oct 2017
Budgeted Experiment Design for Causal Structure Learning
Budgeted Experiment Design for Causal Structure Learning
AmirEmad Ghassami
Saber Salehkaleybar
Negar Kiyavash
Elias Bareinboim
CML
107
64
0
11 Sep 2017
Estimation of interventional effects of features on prediction
Estimation of interventional effects of features on prediction
Patrick Blobaum
Shohei Shimizu
CML
29
8
0
03 Sep 2017
Two-sample instrumental variable analyses using heterogeneous samples
Two-sample instrumental variable analyses using heterogeneous samples
Qingyuan Zhao
Jingshu Wang
J. Bowden
Dylan S. Small
41
47
0
31 Aug 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
153
2,743
0
26 Jun 2017
Invariant Causal Prediction for Sequential Data
Invariant Causal Prediction for Sequential Data
Niklas Pfister
Peter Buhlmann
J. Peters
OOD
80
122
0
25 Jun 2017
Learning Causal Structures Using Regression Invariance
Learning Causal Structures Using Regression Invariance
AmirEmad Ghassami
Saber Salehkaleybar
Negar Kiyavash
Kun Zhang
OODCML
71
61
0
26 May 2017
Group invariance principles for causal generative models
Group invariance principles for causal generative models
M. Besserve
Naji Shajarisales
Bernhard Schölkopf
Dominik Janzing
74
49
0
05 May 2017
Cost-Optimal Learning of Causal Graphs
Cost-Optimal Learning of Causal Graphs
Murat Kocaoglu
A. Dimakis
S. Vishwanath
CML
127
68
0
08 Mar 2017
Optimal Experiment Design for Causal Discovery from Fixed Number of
  Experiments
Optimal Experiment Design for Causal Discovery from Fixed Number of Experiments
AmirEmad Ghassami
Saber Salehkaleybar
Negar Kiyavash
CML
36
5
0
27 Feb 2017
Causal Discovery Using Proxy Variables
Causal Discovery Using Proxy Variables
Mateo Rojas-Carulla
Marco Baroni
David Lopez-Paz
CML
63
15
0
23 Feb 2017
Causal Regularization
Causal Regularization
M. T. Bahadori
Krzysztof Chalupka
Edward Choi
Robert Chen
Walter F. Stewart
Jimeng Sun
CMLOOD
40
2
0
08 Feb 2017
Learning causal effects from many randomized experiments using
  regularized instrumental variables
Learning causal effects from many randomized experiments using regularized instrumental variables
A. Peysakhovich
Dean Eckles
CML
112
23
0
04 Jan 2017
Causal Learning via Manifold Regularization
Causal Learning via Manifold Regularization
S. Hill
Chris J. Oates
Duncan A. J. Blythe
S. Mukherjee
CML
21
1
0
16 Dec 2016
Joint Causal Inference from Multiple Contexts
Joint Causal Inference from Multiple Contexts
Joris M. Mooij
Sara Magliacane
Tom Claassen
CML
140
15
0
30 Nov 2016
A Review on Algorithms for Constraint-based Causal Discovery
Kui Yu
Jiuyong Li
Lin Liu
AI4TSCML
46
22
0
12 Nov 2016
Ancestral Causal Inference
Ancestral Causal Inference
Sara Magliacane
Tom Claassen
Joris M. Mooij
CML
114
63
0
22 Jun 2016
Learning Optimal Interventions
Learning Optimal Interventions
Jonas W. Mueller
David N. Reshef
George Du
Tommi Jaakkola
38
9
0
16 Jun 2016
Structure Learning in Graphical Modeling
Structure Learning in Graphical Modeling
Mathias Drton
Marloes H. Maathuis
CML
107
252
0
07 Jun 2016
Invariant Models for Causal Transfer Learning
Invariant Models for Causal Transfer Learning
Mateo Rojas-Carulla
Bernhard Schölkopf
Richard Turner
J. Peters
OOD
86
23
0
19 Jul 2015
backShift: Learning causal cyclic graphs from unknown shift
  interventions
backShift: Learning causal cyclic graphs from unknown shift interventions
Dominik Rothenhäusler
C. Heinze
J. Peters
N. Meinshausen
OOD
94
72
0
08 Jun 2015
Previous
123...1089