Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 206 papers shown
Title
Optimal transport and Wasserstein distances for causal models
Patrick Cheridito
Stephan Eckstein
OT
40
7
0
24 Mar 2023
Spawrious: A Benchmark for Fine Control of Spurious Correlation Biases
Aengus Lynch
G. Dovonon
Jean Kaddour
Ricardo M. A. Silva
205
30
0
09 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
45
5
0
06 Mar 2023
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
42
29
0
03 Mar 2023
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Tom Yan
Shantanu Gupta
Zachary Chase Lipton
CML
45
1
0
14 Feb 2023
Learning Optimal Features via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
Lav Varshney
OOD
33
2
0
28 Jan 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
49
0
0
26 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
44
61
0
24 Jan 2023
Generalized Invariant Matching Property via LASSO
Kang Du
Yu Xiang
OOD
45
6
0
14 Jan 2023
A System-Level View on Out-of-Distribution Data in Robotics
Rohan Sinha
Apoorva Sharma
Somrita Banerjee
T. Lew
Rachel Luo
Spencer M. Richards
Yixiao Sun
Edward Schmerling
Marco Pavone
UQCV
50
24
0
28 Dec 2022
Target Conditioned Representation Independence (TCRI); From Domain-Invariant to Domain-General Representations
Olawale Salaudeen
Oluwasanmi Koyejo
34
3
0
21 Dec 2022
Exploring Optimal Substructure for Out-of-distribution Generalization via Feature-targeted Model Pruning
Yingchun Wang
Jingcai Guo
Song Guo
Weizhan Zhang
Jiewei Zhang
OODD
44
16
0
19 Dec 2022
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
30
7
0
18 Dec 2022
Deep Learning of Causal Structures in High Dimensions
Kai Lagemann
C. Lagemann
B. Taschler
S. Mukherjee
CML
BDL
AI4CE
32
29
0
09 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
24
7
0
28 Nov 2022
Trust Your
∇
\nabla
∇
: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
51
2
0
24 Nov 2022
Variation-based Cause Effect Identification
Mohamed Amine ben Salem
Karim Barsim
Bin Yang
CML
35
0
0
22 Nov 2022
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
47
1
0
22 Nov 2022
First Steps Toward Understanding the Extrapolation of Nonlinear Models to Unseen Domains
Kefan Dong
Tengyu Ma
OOD
21
20
0
21 Nov 2022
A Consistent Estimator for Confounding Strength
Luca Rendsburg
L. C. Vankadara
D. Ghoshdastidar
U. V. Luxburg
CML
36
2
0
03 Nov 2022
FL Games: A Federated Learning Framework for Distribution Shifts
Sharut Gupta
Kartik Ahuja
Mohammad Havaei
N. Chatterjee
Yoshua Bengio
OOD
FedML
36
18
0
31 Oct 2022
Causal Information Bottleneck Boosts Adversarial Robustness of Deep Neural Network
Hua Hua
Jun Yan
Xi Fang
Weiquan Huang
Huilin Yin
Wancheng Ge
AAML
30
1
0
25 Oct 2022
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Yoonho Lee
Annie S. Chen
Fahim Tajwar
Ananya Kumar
Huaxiu Yao
Percy Liang
Chelsea Finn
OOD
72
201
0
20 Oct 2022
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Stefan Smeu
Elena Burceanu
Andrei Liviu Nicolicioiu
Emanuela Haller
35
4
0
06 Oct 2022
Nuisances via Negativa: Adjusting for Spurious Correlations via Data Augmentation
A. Puli
Nitish Joshi
Yoav Wald
Hera Y. He
Rajesh Ranganath
45
16
0
04 Oct 2022
Distribution inference risks: Identifying and mitigating sources of leakage
Valentin Hartmann
Léo Meynent
Maxime Peyrard
Dimitrios Dimitriadis
Shruti Tople
Robert West
MIACV
31
14
0
18 Sep 2022
On a Built-in Conflict between Deep Learning and Systematic Generalization
Yuanpeng Li
OOD
45
0
0
24 Aug 2022
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Yuqing Wang
Xiangxian Li
Zhuang Qi
Jingyu Li
Xuelong Li
Xiangxu Meng
Lei Meng
OOD
OODD
BDL
44
25
0
22 Aug 2022
Learning Invariant Representations under General Interventions on the Response
Kang Du
Yu Xiang
OOD
31
8
0
22 Aug 2022
Repeated Environment Inference for Invariant Learning
Aayush Mishra
Anqi Liu
BDL
OOD
35
0
0
26 Jul 2022
Causal Discovery using Model Invariance through Knockoff Interventions
Wasim Ahmad
M. Shadaydeh
Joachim Denzler
CML
30
4
0
08 Jul 2022
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
43
28
0
06 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
131
32
0
04 Jul 2022
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
43
2
0
03 Jul 2022
Towards out of distribution generalization for problems in mechanics
Lingxiao Yuan
Harold S. Park
Emma Lejeune
OOD
AI4CE
36
17
0
29 Jun 2022
When Does Group Invariant Learning Survive Spurious Correlations?
Yimeng Chen
Ruibin Xiong
Zhiming Ma
Yanyan Lan
OOD
CML
43
21
0
29 Jun 2022
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
48
4
0
24 Jun 2022
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
43
116
0
16 Jun 2022
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
36
8
0
09 Jun 2022
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
31
25
0
09 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
46
48
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
53
20
0
03 Jun 2022
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
41
3
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
28
8
0
29 May 2022
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
44
12
0
27 May 2022
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
CML
52
110
0
23 May 2022
An Invariant Matching Property for Distribution Generalization under Intervened Response
Kang Du
Yu Xiang
OOD
24
4
0
18 May 2022
Searching for subgroup-specific associations while controlling the false discovery rate
M. Sesia
Tianshu Sun
33
0
0
17 May 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
58
321
0
06 Apr 2022
Do learned representations respect causal relationships?
Lan Wang
Vishnu Boddeti
NAI
CML
OOD
44
6
0
02 Apr 2022
Previous
1
2
3
4
5
Next