ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.01332
  4. Cited By
Causal inference using invariant prediction: identification and
  confidence intervals

Causal inference using invariant prediction: identification and confidence intervals

6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
    OOD
ArXivPDFHTML

Papers citing "Causal inference using invariant prediction: identification and confidence intervals"

50 / 206 papers shown
Title
Optimal transport and Wasserstein distances for causal models
Optimal transport and Wasserstein distances for causal models
Patrick Cheridito
Stephan Eckstein
OT
40
7
0
24 Mar 2023
Spawrious: A Benchmark for Fine Control of Spurious Correlation Biases
Spawrious: A Benchmark for Fine Control of Spurious Correlation Biases
Aengus Lynch
G. Dovonon
Jean Kaddour
Ricardo M. A. Silva
205
30
0
09 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
45
5
0
06 Mar 2023
Diagnosing Model Performance Under Distribution Shift
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
42
29
0
03 Mar 2023
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Tom Yan
Shantanu Gupta
Zachary Chase Lipton
CML
45
1
0
14 Feb 2023
Learning Optimal Features via Partial Invariance
Learning Optimal Features via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
Lav Varshney
OOD
33
2
0
28 Jan 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
49
0
0
26 Jan 2023
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Model Agnostic Sample Reweighting for Out-of-Distribution Learning
Xiao Zhou
Yong Lin
Renjie Pi
Weizhong Zhang
Renzhe Xu
Peng Cui
Tong Zhang
OODD
44
61
0
24 Jan 2023
Generalized Invariant Matching Property via LASSO
Generalized Invariant Matching Property via LASSO
Kang Du
Yu Xiang
OOD
45
6
0
14 Jan 2023
A System-Level View on Out-of-Distribution Data in Robotics
A System-Level View on Out-of-Distribution Data in Robotics
Rohan Sinha
Apoorva Sharma
Somrita Banerjee
T. Lew
Rachel Luo
Spencer M. Richards
Yixiao Sun
Edward Schmerling
Marco Pavone
UQCV
50
24
0
28 Dec 2022
Target Conditioned Representation Independence (TCRI); From
  Domain-Invariant to Domain-General Representations
Target Conditioned Representation Independence (TCRI); From Domain-Invariant to Domain-General Representations
Olawale Salaudeen
Oluwasanmi Koyejo
34
3
0
21 Dec 2022
Exploring Optimal Substructure for Out-of-distribution Generalization
  via Feature-targeted Model Pruning
Exploring Optimal Substructure for Out-of-distribution Generalization via Feature-targeted Model Pruning
Yingchun Wang
Jingcai Guo
Song Guo
Weizhan Zhang
Jiewei Zhang
OODD
44
16
0
19 Dec 2022
On the Connection between Invariant Learning and Adversarial Training
  for Out-of-Distribution Generalization
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
30
7
0
18 Dec 2022
Deep Learning of Causal Structures in High Dimensions
Deep Learning of Causal Structures in High Dimensions
Kai Lagemann
C. Lagemann
B. Taschler
S. Mukherjee
CML
BDL
AI4CE
32
29
0
09 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
24
7
0
28 Nov 2022
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
51
2
0
24 Nov 2022
Variation-based Cause Effect Identification
Variation-based Cause Effect Identification
Mohamed Amine ben Salem
Karim Barsim
Bin Yang
CML
35
0
0
22 Nov 2022
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
47
1
0
22 Nov 2022
First Steps Toward Understanding the Extrapolation of Nonlinear Models
  to Unseen Domains
First Steps Toward Understanding the Extrapolation of Nonlinear Models to Unseen Domains
Kefan Dong
Tengyu Ma
OOD
21
20
0
21 Nov 2022
A Consistent Estimator for Confounding Strength
A Consistent Estimator for Confounding Strength
Luca Rendsburg
L. C. Vankadara
D. Ghoshdastidar
U. V. Luxburg
CML
36
2
0
03 Nov 2022
FL Games: A Federated Learning Framework for Distribution Shifts
FL Games: A Federated Learning Framework for Distribution Shifts
Sharut Gupta
Kartik Ahuja
Mohammad Havaei
N. Chatterjee
Yoshua Bengio
OOD
FedML
36
18
0
31 Oct 2022
Causal Information Bottleneck Boosts Adversarial Robustness of Deep
  Neural Network
Causal Information Bottleneck Boosts Adversarial Robustness of Deep Neural Network
Hua Hua
Jun Yan
Xi Fang
Weiquan Huang
Huilin Yin
Wancheng Ge
AAML
30
1
0
25 Oct 2022
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Yoonho Lee
Annie S. Chen
Fahim Tajwar
Ananya Kumar
Huaxiu Yao
Percy Liang
Chelsea Finn
OOD
72
201
0
20 Oct 2022
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Env-Aware Anomaly Detection: Ignore Style Changes, Stay True to Content!
Stefan Smeu
Elena Burceanu
Andrei Liviu Nicolicioiu
Emanuela Haller
35
4
0
06 Oct 2022
Nuisances via Negativa: Adjusting for Spurious Correlations via Data
  Augmentation
Nuisances via Negativa: Adjusting for Spurious Correlations via Data Augmentation
A. Puli
Nitish Joshi
Yoav Wald
Hera Y. He
Rajesh Ranganath
45
16
0
04 Oct 2022
Distribution inference risks: Identifying and mitigating sources of
  leakage
Distribution inference risks: Identifying and mitigating sources of leakage
Valentin Hartmann
Léo Meynent
Maxime Peyrard
Dimitrios Dimitriadis
Shruti Tople
Robert West
MIACV
31
14
0
18 Sep 2022
On a Built-in Conflict between Deep Learning and Systematic
  Generalization
On a Built-in Conflict between Deep Learning and Systematic Generalization
Yuanpeng Li
OOD
45
0
0
24 Aug 2022
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Meta-Causal Feature Learning for Out-of-Distribution Generalization
Yuqing Wang
Xiangxian Li
Zhuang Qi
Jingyu Li
Xuelong Li
Xiangxu Meng
Lei Meng
OOD
OODD
BDL
44
25
0
22 Aug 2022
Learning Invariant Representations under General Interventions on the
  Response
Learning Invariant Representations under General Interventions on the Response
Kang Du
Yu Xiang
OOD
31
8
0
22 Aug 2022
Repeated Environment Inference for Invariant Learning
Repeated Environment Inference for Invariant Learning
Aayush Mishra
Anqi Liu
BDL
OOD
35
0
0
26 Jul 2022
Causal Discovery using Model Invariance through Knockoff Interventions
Causal Discovery using Model Invariance through Knockoff Interventions
Wasim Ahmad
M. Shadaydeh
Joachim Denzler
CML
30
4
0
08 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
43
28
0
06 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
131
32
0
04 Jul 2022
Learning to Increase the Power of Conditional Randomization Tests
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
43
2
0
03 Jul 2022
Towards out of distribution generalization for problems in mechanics
Towards out of distribution generalization for problems in mechanics
Lingxiao Yuan
Harold S. Park
Emma Lejeune
OOD
AI4CE
36
17
0
29 Jun 2022
When Does Group Invariant Learning Survive Spurious Correlations?
When Does Group Invariant Learning Survive Spurious Correlations?
Yimeng Chen
Ruibin Xiong
Zhiming Ma
Yanyan Lan
OOD
CML
43
21
0
29 Jun 2022
Gated Domain Units for Multi-source Domain Generalization
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
48
4
0
24 Jun 2022
GOOD: A Graph Out-of-Distribution Benchmark
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
43
116
0
16 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
36
8
0
09 Jun 2022
Sample-Efficient Reinforcement Learning in the Presence of Exogenous
  Information
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
31
25
0
09 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
46
48
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
53
20
0
03 Jun 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
41
3
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
28
8
0
29 May 2022
Detecting hidden confounding in observational data using multiple
  environments
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
44
12
0
27 May 2022
Causal Machine Learning for Healthcare and Precision Medicine
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
CML
52
110
0
23 May 2022
An Invariant Matching Property for Distribution Generalization under
  Intervened Response
An Invariant Matching Property for Distribution Generalization under Intervened Response
Kang Du
Yu Xiang
OOD
24
4
0
18 May 2022
Searching for subgroup-specific associations while controlling the false
  discovery rate
Searching for subgroup-specific associations while controlling the false discovery rate
M. Sesia
Tianshu Sun
33
0
0
17 May 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
58
321
0
06 Apr 2022
Do learned representations respect causal relationships?
Do learned representations respect causal relationships?
Lan Wang
Vishnu Boddeti
NAI
CML
OOD
44
6
0
02 Apr 2022
Previous
12345
Next