Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
v1
v2
v3 (latest)
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 493 papers shown
Title
Explainability-aided Domain Generalization for Image Classification
Robin M. Schmidt
FAtt
OOD
51
1
0
05 Apr 2021
Improved and efficient inter-vehicle distance estimation using road gradients of both ego and target vehicles
Robik Shrestha
Jinkyu Lee
Kushal Kafle
S. Hwang
Il Yong Chun
64
1
0
01 Apr 2021
Learning Under Adversarial and Interventional Shifts
Harvineet Singh
Shalmali Joshi
Finale Doshi-Velez
Himabindu Lakkaraju
OOD
58
3
0
29 Mar 2021
Meta-Learned Invariant Risk Minimization
Jun-Hyun Bae
Inchul Choi
Minho Lee
OOD
59
11
0
24 Mar 2021
An Empirical Framework for Domain Generalization in Clinical Settings
Haoran Zhang
Natalie Dullerud
Laleh Seyyed-Kalantari
Q. Morris
Shalmali Joshi
Marzyeh Ghassemi
OOD
AI4CE
125
61
0
20 Mar 2021
Regularizing towards Causal Invariance: Linear Models with Proxies
Michael Oberst
Nikolaj Thams
J. Peters
David Sontag
OOD
75
25
0
03 Mar 2021
Audio scene monitoring using redundant ad-hoc microphone array networks
Peter Gerstoft
Yihan Hu
Michael J. Bianco
Chaitanya Patil
Ardel Alegre
Y. Freund
François Grondin
73
12
0
02 Mar 2021
Scalable Causal Domain Adaptation
Mohammad Ali Javidian
O. Pandey
Pooyan Jamshidi
CML
31
4
0
27 Feb 2021
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
102
36
0
25 Feb 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
128
52
0
24 Feb 2021
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
152
322
0
22 Feb 2021
Linear unit-tests for invariance discovery
Benjamin Aubin
A. Slowik
Martín Arjovsky
Léon Bottou
David Lopez-Paz
OOD
67
31
0
22 Feb 2021
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
123
158
0
20 Feb 2021
Model-Invariant State Abstractions for Model-Based Reinforcement Learning
Manan Tomar
Amy Zhang
Roberto Calandra
Matthew E. Taylor
Joelle Pineau
92
26
0
19 Feb 2021
Out-of-Distribution Generalization Analysis via Influence Function
Haotian Ye
Chuanlong Xie
Yue Liu
Zhenguo Li
OOD
50
13
0
21 Jan 2021
Conditional Independence Testing in Hilbert Spaces with Applications to Functional Data Analysis
A. Lundborg
Rajen Dinesh Shah
J. Peters
74
23
0
18 Jan 2021
Learning and scoring Gaussian latent variable causal models with unknown additive interventions
Armeen Taeb
Juan L. Gamella
C. Heinze-Deml
Peter Buhlmann
CML
122
2
0
18 Jan 2021
Out-of-distribution Prediction with Invariant Risk Minimization: The Limitation and An Effective Fix
Ruocheng Guo
Pengchuan Zhang
Hao Liu
Emre Kıcıman
OOD
80
37
0
16 Jan 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
279
128
0
04 Jan 2021
Generative Interventions for Causal Learning
Chengzhi Mao
Augustine Cha
Amogh Gupta
Hongya Wang
Junfeng Yang
Carl Vondrick
CML
OOD
79
66
0
22 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
277
1,451
0
14 Dec 2020
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
308
267
0
09 Dec 2020
Intervention Design for Effective Sim2Real Transfer
Melissa Mozifian
Amy Zhang
Joelle Pineau
David Meger
43
9
0
03 Dec 2020
Supercharging Imbalanced Data Learning With Energy-based Contrastive Representation Transfer
Zidi Xiu
Junya Chen
Ricardo Henao
B. Goldstein
Lawrence Carin
Chenyang Tao
47
10
0
25 Nov 2020
Invariant Representation Learning for Treatment Effect Estimation
Claudia Shi
Victor Veitch
David M. Blei
OOD
CML
47
31
0
24 Nov 2020
Statistical Inference for Maximin Effects: Identifying Stable Associations across Multiple Studies
Zijian Guo
56
17
0
15 Nov 2020
Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification
Robert Adragna
Elliot Creager
David Madras
R. Zemel
OOD
FaML
74
43
0
12 Nov 2020
Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners
E. C. Neto
OOD
CML
61
6
0
09 Nov 2020
Stable predictions for health related anticausal prediction tasks affected by selection biases: the need to deconfound the test set features
E. C. Neto
Phil Snyder
S. Sieberts
L. Omberg
CML
OOD
6
1
0
09 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
153
688
0
06 Nov 2020
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
107
111
0
04 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
88
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
127
106
0
03 Nov 2020
Understanding the Failure Modes of Out-of-Distribution Generalization
Vaishnavh Nagarajan
Anders Andreassen
Behnam Neyshabur
OOD
OODD
77
178
0
29 Oct 2020
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
132
40
0
29 Oct 2020
Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
Kartik Ahuja
Karthikeyan Shanmugam
Amit Dhurandhar
57
9
0
28 Oct 2020
Causal Transfer Random Forest: Combining Logged Data and Randomized Experiments for Robust Prediction
Shuxi Zeng
Murat Ali Bayir
Joel Pfeiffer
Denis Xavier Charles
Emre Kıcıman
TTA
41
18
0
17 Oct 2020
Representation Learning via Invariant Causal Mechanisms
Jovana Mitrović
Brian McWilliams
Jacob Walker
Lars Buesing
Charles Blundell
CML
OOD
SSL
77
250
0
15 Oct 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
68
384
0
14 Oct 2020
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
98
312
0
12 Oct 2020
Social Commonsense Reasoning with Multi-Head Knowledge Attention
Debjit Paul
Anette Frank
LRM
31
19
0
12 Oct 2020
Causal learning with sufficient statistics: an information bottleneck approach
D. Chicharro
M. Besserve
S. Panzeri
CML
52
5
0
12 Oct 2020
Explaining The Efficacy of Counterfactually Augmented Data
Divyansh Kaushik
Amrith Rajagopal Setlur
Eduard H. Hovy
Zachary Chase Lipton
CML
72
82
0
05 Oct 2020
CASTLE: Regularization via Auxiliary Causal Graph Discovery
Trent Kyono
Yao Zhang
M. Schaar
OOD
CML
66
69
0
28 Sep 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
182
313
0
24 Sep 2020
Causal Bandits without prior knowledge using separating sets
A. D. Kroon
Danielle Belgrave
Joris M. Mooij
CML
30
23
0
16 Sep 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
86
187
0
01 Sep 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
100
67
0
04 Aug 2020
Out-of-distribution Generalization via Partial Feature Decorrelation
Xin Guo
Zhengxu Yu
Chao Xiang
Zhongming Jin
Jianqiang Huang
Deng Cai
Xiaofei He
Xiansheng Hua
OODD
OOD
20
0
0
30 Jul 2020
Information-Theoretic Approximation to Causal Models
Peter Gmeiner
14
0
0
29 Jul 2020
Previous
1
2
3
...
10
7
8
9
Next