Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 206 papers shown
Title
Causality-Inspired Robustness for Nonlinear Models via Representation Learning
Marin Šola
Peter Bühlmann
Xinwei Shen
OOD
17
0
0
19 May 2025
Unsupervised Invariant Risk Minimization
Yotam Norman
Ron Meir
OOD
19
0
0
18 May 2025
Bayesian Hierarchical Invariant Prediction
Francisco Madaleno
Pernille Julie Viuff Sand
Francisco C. Pereira
Sergio Hernan Garrido Mejia
24
0
0
16 May 2025
Heterogeneous Data Game: Characterizing the Model Competition Across Multiple Data Sources
Renzhe Xu
Kun Wang
Bo Li
41
0
0
12 May 2025
Characterization and Learning of Causal Graphs from Hard Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
89
0
0
02 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
79
0
0
30 Apr 2025
On the Value of Cross-Modal Misalignment in Multimodal Representation Learning
Yichao Cai
Yuhang Liu
Erdun Gao
Tianjiao Jiang
Zhen Zhang
Anton van den Hengel
Javen Qinfeng Shi
64
0
0
14 Apr 2025
Partial Transportability for Domain Generalization
Kasra Jalaldoust
Alexis Bellot
Elias Bareinboim
OOD
80
5
0
30 Mar 2025
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
99
8
0
13 Mar 2025
Data Distributional Properties As Inductive Bias for Systematic Generalization
Felipe del-Rio
Alain Raymond-Sáez
Daniel Florea
Rodrigo Toro Icarte
Julio Hurtado
Cristian B. Calderon
Á. Soto
AI4CE
38
0
0
27 Feb 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
79
1
0
18 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
80
3
0
04 Feb 2025
Empirical likelihood for Fréchet means on open books
Karthik Bharath
Huiling Le
A. Wood
Xi Yan
133
0
0
25 Dec 2024
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
76
0
0
29 Oct 2024
Systems with Switching Causal Relations: A Meta-Causal Perspective
Moritz Willig
Tim Nelson Tobiasch
Florian Peter Busch
Jonas Seng
Devendra Singh Dhami
Kristian Kersting
CML
50
0
0
16 Oct 2024
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
Charles Jones
Fabio De Sousa Ribeiro
Mélanie Roschewitz
Daniel Coelho De Castro
Ben Glocker
FaML
OOD
CML
148
1
0
05 Oct 2024
Learning Causally Invariant Reward Functions from Diverse Demonstrations
Ivan Ovinnikov
Eugene Bykovets
J. M. Buhmann
CML
40
0
0
12 Sep 2024
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
67
0
0
01 Jul 2024
Towards a Better Evaluation of Out-of-Domain Generalization
Duhun Hwang
Suhyun Kang
Moonjung Eo
Jimyeong Kim
Wonjong Rhee
64
0
0
30 May 2024
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
51
1
0
30 May 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
52
0
0
24 May 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
OOD
CML
82
2
0
07 May 2024
Causally Inspired Regularization Enables Domain General Representations
Olawale Salaudeen
Oluwasanmi Koyejo
OOD
CML
27
2
0
25 Apr 2024
Invariant Subspace Decomposition
Margherita Lazzaretto
Jonas Peters
Niklas Pfister
26
0
0
15 Apr 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
54
2
0
19 Dec 2023
Invariant Representation via Decoupling Style and Spurious Features from Images
Ruimeng Li
Yuanhao Pu
Zhaoyi Li
Hong Xie
Defu Lian
OOD
33
1
0
11 Dec 2023
Machine-Guided Discovery of a Real-World Rogue Wave Model
Dion Häfner
Johannes Gemmrich
Markus Jochum
AI4CE
15
10
0
21 Nov 2023
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
45
34
0
29 Oct 2023
Domain Generalisation via Risk Distribution Matching
Toan Nguyen
Kien Do
Bao Duong
T. Nguyen
OOD
44
4
0
28 Oct 2023
Continual Invariant Risk Minimization
Francesco Alesiani
Shujian Yu
Mathias Niepert
OOD
31
1
0
21 Oct 2023
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
Suchi Saria
David M. Blei
OOD
CML
36
7
0
19 Oct 2023
Environment-biased Feature Ranking for Novelty Detection Robustness
Stefan Smeu
Elena Burceanu
Emanuela Haller
Andrei Liviu Nicolicioiu
OOD
44
0
0
21 Sep 2023
Pareto Invariant Representation Learning for Multimedia Recommendation
Shanshan Huang
Haoxuan Li
Qingsong Li
Chunyuan Zheng
Li Liu
CML
29
12
0
09 Aug 2023
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
38
1
0
29 Jul 2023
AI for Anticipatory Action: Moving Beyond Climate Forecasting
Benjamin Q. Huynh
M. Kiang
AI4CE
32
0
0
28 Jul 2023
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
69
8
0
18 Jul 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
36
6
0
02 Jul 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
31
2
0
20 Jun 2023
VIBR: Learning View-Invariant Value Functions for Robust Visual Control
Tom Dupuis
Jaonary Rabarisoa
Q. C. Pham
David Filliat
49
0
0
14 Jun 2023
Invariant Causal Set Covering Machines
Thibaud Godon
Baptiste Bauvin
Pascal Germain
J. Corbeil
Alexandre Drouin
CML
29
0
0
07 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
35
57
0
01 Jun 2023
An Invariant Learning Characterization of Controlled Text Generation
Carolina Zheng
Claudia Shi
Keyon Vafa
Amir Feder
David M. Blei
OOD
40
8
0
31 May 2023
Discovering Causal Relations and Equations from Data
Gustau Camps-Valls
Andreas Gerhardus
Urmi Ninad
Gherardo Varando
Georg Martius
E. Balaguer-Ballester
Ricardo Vinuesa
Emiliano Díaz
L. Zanna
Jakob Runge
PINN
AI4Cl
AI4CE
CML
51
75
0
21 May 2023
SFP: Spurious Feature-targeted Pruning for Out-of-Distribution Generalization
Yingchun Wang
Jingcai Guo
Yi Liu
Song Guo
Weizhan Zhang
Xiangyong Cao
Qinghua Zheng
AAML
OODD
45
11
0
19 May 2023
Consistency Regularization for Domain Generalization with Logit Attribution Matching
Han Gao
Kaican Li
Weiyan Xie
Zhi Lin
Yongxiang Huang
Luning Wang
Caleb Chen Cao
N. Zhang
18
2
0
13 May 2023
Multi-view Adversarial Discriminator: Mine the Non-causal Factors for Object Detection in Unseen Domains
Min Xu
Lingyun Qin
Weijie Chen
Shiliang Pu
Lei Zhang
OOD
19
29
0
06 Apr 2023
A step towards the applicability of algorithms based on invariant causal learning on observational data
Borja Guerrero Santillan
CML
OOD
19
1
0
05 Apr 2023
Predictive Heterogeneity: Measures and Applications
Jiashuo Liu
Jiayun Wu
Yangqiu Song
Peng Cui
40
1
0
01 Apr 2023
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
Ran He
34
28
0
27 Mar 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
24
2
0
26 Mar 2023
1
2
3
4
5
Next