Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01332
Cited By
v1
v2
v3 (latest)
Causal inference using invariant prediction: identification and confidence intervals
6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Causal inference using invariant prediction: identification and confidence intervals"
50 / 493 papers shown
Title
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
77
25
0
09 Jun 2022
Enhancing Distributional Stability among Sub-populations
Jiashuo Liu
Jiayun Wu
Jie Peng
Xiaoyu Wu
Zheyan Shen
Yangqiu Song
Peng Cui
OOD
44
3
0
07 Jun 2022
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
98
50
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
110
22
0
03 Jun 2022
Adversarial Unlearning: Reducing Confidence Along Adversarial Directions
Amrith Rajagopal Setlur
Benjamin Eysenbach
Virginia Smith
Sergey Levine
73
18
0
03 Jun 2022
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
Amir Feder
G. Horowitz
Yoav Wald
Roi Reichart
Nir Rosenfeld
OOD
75
7
0
01 Jun 2022
Differentiable Invariant Causal Discovery
Yu Wang
An Zhang
Xiang Wang
Yancheng Yuan
Xiangnan He
Tat-Seng Chua
OOD
CML
120
1
0
31 May 2022
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
78
4
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
58
8
0
29 May 2022
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
82
13
0
27 May 2022
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
Ziquan Liu
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
Xiangyang Ji
Antoni B. Chan
OOD
87
16
0
25 May 2022
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
CML
96
123
0
23 May 2022
Improving Multi-Task Generalization via Regularizing Spurious Correlation
Ziniu Hu
Zhe Zhao
Xinyang Yi
Tiansheng Yao
Lichan Hong
Yizhou Sun
Ed H. Chi
OOD
LRM
142
30
0
19 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
256
138
0
19 May 2022
An Invariant Matching Property for Distribution Generalization under Intervened Response
Kang Du
Yu Xiang
OOD
69
4
0
18 May 2022
Searching for subgroup-specific associations while controlling the false discovery rate
M. Sesia
Tianshu Sun
78
0
0
17 May 2022
Scalable Regularised Joint Mixture Models
Thomas Lartigue
S. Mukherjee
51
0
0
03 May 2022
From graphs to DAGs: a low-complexity model and a scalable algorithm
Shuyu Dong
Michèle Sebag
CML
56
5
0
10 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
97
339
0
06 Apr 2022
Do learned representations respect causal relationships?
Lan Wang
Vishnu Boddeti
NAI
CML
OOD
82
6
0
02 Apr 2022
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
97
46
0
01 Apr 2022
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Siyuan Guo
V. Tóth
Bernhard Schölkopf
Ferenc Huszár
CML
92
37
0
29 Mar 2022
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
60
1
0
29 Mar 2022
Core Risk Minimization using Salient ImageNet
Sahil Singla
Mazda Moayeri
Soheil Feizi
88
14
0
28 Mar 2022
Causality Inspired Representation Learning for Domain Generalization
Fangrui Lv
Jian Liang
Shuang Li
Bin Zang
Chi Harold Liu
Ziteng Wang
Di Liu
CML
OOD
122
174
0
27 Mar 2022
Out-of-distribution Generalization with Causal Invariant Transformations
Ruoyu Wang
Mingyang Yi
Zhitang Chen
Shengyu Zhu
OOD
OODD
84
60
0
22 Mar 2022
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
OOD
CML
AI4TS
109
32
0
18 Mar 2022
Identifiability of Sparse Causal Effects using Instrumental Variables
Niklas Pfister
J. Peters
CML
48
10
0
17 Mar 2022
ZIN: When and How to Learn Invariance Without Environment Partition?
Yong Lin
Shengyu Zhu
Lu Tan
Peng Cui
OOD
CML
88
69
0
11 Mar 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
141
50
0
03 Mar 2022
Local Constraint-Based Causal Discovery under Selection Bias
Philip Versteeg
Cheng Zhang
Joris M. Mooij
CML
47
13
0
03 Mar 2022
Towards IID representation learning and its application on biomedical data
Jiqing Wu
I. Zlobec
Maxime W. Lafarge
Yukun He
V. Koelzer
OOD
CML
41
4
0
01 Mar 2022
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
Weijia Zhang
Xuanhui Zhang
Hanwen Deng
Min-Ling Zhang
98
23
0
25 Feb 2022
Generalizable Information Theoretic Causal Representation
Mengyue Yang
Xin-Qiang Cai
Furui Liu
Xu Chen
Zhitang Chen
Jianye Hao
Jun Wang
OOD
CML
120
1
0
17 Feb 2022
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
83
82
0
14 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
97
54
0
07 Feb 2022
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
54
4
0
04 Feb 2022
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
Leonard Henckel
Niklas Pfister
J. Peters
74
18
0
03 Feb 2022
Influence-Augmented Local Simulators: A Scalable Solution for Fast Deep RL in Large Networked Systems
Miguel Suau
Jinke He
M. Spaan
F. Oliehoek
58
4
0
03 Feb 2022
Invariant Ancestry Search
Phillip B. Mogensen
Nikolaj Thams
J. Peters
87
5
0
02 Feb 2022
On the Limitations of General Purpose Domain Generalisation Methods
Henry Gouk
Ondrej Bohdal
Da Li
Timothy M. Hospedales
75
11
0
01 Feb 2022
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Yue Liu
Han Zhao
OOD
128
35
0
30 Jan 2022
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
88
104
0
15 Jan 2022
Automated causal inference in application to randomized controlled clinical trials
Ji Q. Wu
N. Horeweg
M. de Bruyn
R. Nout
I. Jürgenliemk-Schulz
...
H. Nijman
V. Smit
T. Bosse
C. Creutzberg
V. Koelzer
CML
62
14
0
15 Jan 2022
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Liang Zhao
Kenneth Church
OOD
CML
29
1
0
06 Jan 2022
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
Lav Varshney
OOD
66
1
0
17 Dec 2021
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
87
17
0
07 Dec 2021
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
59
5
0
01 Dec 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OOD
TTA
106
53
0
29 Nov 2021
Previous
1
2
3
...
10
5
6
7
8
9
Next