ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.01332
  4. Cited By
Causal inference using invariant prediction: identification and
  confidence intervals
v1v2v3 (latest)

Causal inference using invariant prediction: identification and confidence intervals

6 January 2015
J. Peters
Peter Buhlmann
N. Meinshausen
    OOD
ArXiv (abs)PDFHTML

Papers citing "Causal inference using invariant prediction: identification and confidence intervals"

50 / 493 papers shown
Title
Sample-Efficient Reinforcement Learning in the Presence of Exogenous
  Information
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
77
25
0
09 Jun 2022
Enhancing Distributional Stability among Sub-populations
Enhancing Distributional Stability among Sub-populations
Jiashuo Liu
Jiayun Wu
Jie Peng
Xiaoyu Wu
Zheyan Shen
Yangqiu Song
Peng Cui
OOD
44
3
0
07 Jun 2022
Active Bayesian Causal Inference
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
98
50
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CMLBDL
110
22
0
03 Jun 2022
Adversarial Unlearning: Reducing Confidence Along Adversarial Directions
Adversarial Unlearning: Reducing Confidence Along Adversarial Directions
Amrith Rajagopal Setlur
Benjamin Eysenbach
Virginia Smith
Sergey Levine
73
18
0
03 Jun 2022
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
Amir Feder
G. Horowitz
Yoav Wald
Roi Reichart
Nir Rosenfeld
OOD
75
7
0
01 Jun 2022
Differentiable Invariant Causal Discovery
Differentiable Invariant Causal Discovery
Yu Wang
An Zhang
Xiang Wang
Yancheng Yuan
Xiangnan He
Tat-Seng Chua
OODCML
120
1
0
31 May 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
78
4
0
30 May 2022
The Missing Invariance Principle Found -- the Reciprocal Twin of
  Invariant Risk Minimization
The Missing Invariance Principle Found -- the Reciprocal Twin of Invariant Risk Minimization
Dongsung Huh
A. Baidya
OOD
58
8
0
29 May 2022
Detecting hidden confounding in observational data using multiple
  environments
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CMLOOD
82
13
0
27 May 2022
An Empirical Study on Distribution Shift Robustness From the Perspective
  of Pre-Training and Data Augmentation
An Empirical Study on Distribution Shift Robustness From the Perspective of Pre-Training and Data Augmentation
Ziquan Liu
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
Xiangyang Ji
Antoni B. Chan
OOD
87
16
0
25 May 2022
Causal Machine Learning for Healthcare and Precision Medicine
Causal Machine Learning for Healthcare and Precision Medicine
Pedro Sanchez
J. Voisey
Tian Xia
Hannah I. Watson
Alison Q. OÑeil
Sotirios A. Tsaftaris
OODCML
96
123
0
23 May 2022
Improving Multi-Task Generalization via Regularizing Spurious
  Correlation
Improving Multi-Task Generalization via Regularizing Spurious Correlation
Ziniu Hu
Zhe Zhao
Xinyang Yi
Tiansheng Yao
Lichan Hong
Yizhou Sun
Ed H. Chi
OODLRM
142
30
0
19 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
256
138
0
19 May 2022
An Invariant Matching Property for Distribution Generalization under
  Intervened Response
An Invariant Matching Property for Distribution Generalization under Intervened Response
Kang Du
Yu Xiang
OOD
69
4
0
18 May 2022
Searching for subgroup-specific associations while controlling the false
  discovery rate
Searching for subgroup-specific associations while controlling the false discovery rate
M. Sesia
Tianshu Sun
78
0
0
17 May 2022
Scalable Regularised Joint Mixture Models
Scalable Regularised Joint Mixture Models
Thomas Lartigue
S. Mukherjee
51
0
0
03 May 2022
From graphs to DAGs: a low-complexity model and a scalable algorithm
From graphs to DAGs: a low-complexity model and a scalable algorithm
Shuyu Dong
Michèle Sebag
CML
56
5
0
10 Apr 2022
Last Layer Re-Training is Sufficient for Robustness to Spurious
  Correlations
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations
Polina Kirichenko
Pavel Izmailov
A. Wilson
OOD
97
339
0
06 Apr 2022
Do learned representations respect causal relationships?
Do learned representations respect causal relationships?
Lan Wang
Vishnu Boddeti
NAICMLOOD
82
6
0
02 Apr 2022
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
97
46
0
01 Apr 2022
Causal de Finetti: On the Identification of Invariant Causal Structure
  in Exchangeable Data
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Siyuan Guo
V. Tóth
Bernhard Schölkopf
Ferenc Huszár
CML
92
37
0
29 Mar 2022
Invariance Learning based on Label Hierarchy
Invariance Learning based on Label Hierarchy
S. Toyota
Kenji Fukumizu
OOD
60
1
0
29 Mar 2022
Core Risk Minimization using Salient ImageNet
Core Risk Minimization using Salient ImageNet
Sahil Singla
Mazda Moayeri
Soheil Feizi
88
14
0
28 Mar 2022
Causality Inspired Representation Learning for Domain Generalization
Causality Inspired Representation Learning for Domain Generalization
Fangrui Lv
Jian Liang
Shuang Li
Bin Zang
Chi Harold Liu
Ziteng Wang
Di Liu
CMLOOD
122
174
0
27 Mar 2022
Out-of-distribution Generalization with Causal Invariant Transformations
Out-of-distribution Generalization with Causal Invariant Transformations
Ruoyu Wang
Mingyang Yi
Zhitang Chen
Shengyu Zhu
OODOODD
84
60
0
22 Mar 2022
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
WOODS: Benchmarks for Out-of-Distribution Generalization in Time Series
Jean-Christophe Gagnon-Audet
Kartik Ahuja
Mohammad Javad Darvishi Bayazi
Pooneh Mousavi
G. Dumas
Irina Rish
OODCMLAI4TS
109
32
0
18 Mar 2022
Identifiability of Sparse Causal Effects using Instrumental Variables
Identifiability of Sparse Causal Effects using Instrumental Variables
Niklas Pfister
J. Peters
CML
48
10
0
17 Mar 2022
ZIN: When and How to Learn Invariance Without Environment Partition?
ZIN: When and How to Learn Invariance Without Environment Partition?
Yong Lin
Shengyu Zhu
Lu Tan
Peng Cui
OODCML
88
69
0
11 Mar 2022
Interventions, Where and How? Experimental Design for Causal Models at
  Scale
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
141
50
0
03 Mar 2022
Local Constraint-Based Causal Discovery under Selection Bias
Local Constraint-Based Causal Discovery under Selection Bias
Philip Versteeg
Cheng Zhang
Joris M. Mooij
CML
47
13
0
03 Mar 2022
Towards IID representation learning and its application on biomedical
  data
Towards IID representation learning and its application on biomedical data
Jiqing Wu
I. Zlobec
Maxime W. Lafarge
Yukun He
V. Koelzer
OODCML
41
4
0
01 Mar 2022
Multi-Instance Causal Representation Learning for Instance Label
  Prediction and Out-of-Distribution Generalization
Multi-Instance Causal Representation Learning for Instance Label Prediction and Out-of-Distribution Generalization
Weijia Zhang
Xuanhui Zhang
Hanwen Deng
Min-Ling Zhang
98
23
0
25 Feb 2022
Generalizable Information Theoretic Causal Representation
Generalizable Information Theoretic Causal Representation
Mengyue Yang
Xin-Qiang Cai
Furui Liu
Xu Chen
Zhitang Chen
Jianye Hao
Jun Wang
OODCML
120
1
0
17 Feb 2022
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
  for Out-of-Distribution Generalization
Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
83
82
0
14 Feb 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CMLELM
97
54
0
07 Feb 2022
Correcting Confounding via Random Selection of Background Variables
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
54
4
0
04 Feb 2022
Exploiting Independent Instruments: Identification and Distribution
  Generalization
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
Leonard Henckel
Niklas Pfister
J. Peters
74
18
0
03 Feb 2022
Influence-Augmented Local Simulators: A Scalable Solution for Fast Deep
  RL in Large Networked Systems
Influence-Augmented Local Simulators: A Scalable Solution for Fast Deep RL in Large Networked Systems
Miguel Suau
Jinke He
M. Spaan
F. Oliehoek
58
4
0
03 Feb 2022
Invariant Ancestry Search
Invariant Ancestry Search
Phillip B. Mogensen
Nikolaj Thams
J. Peters
87
5
0
02 Feb 2022
On the Limitations of General Purpose Domain Generalisation Methods
On the Limitations of General Purpose Domain Generalisation Methods
Henry Gouk
Ondrej Bohdal
Da Li
Timothy M. Hospedales
75
11
0
01 Feb 2022
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Provable Domain Generalization via Invariant-Feature Subspace Recovery
Haoxiang Wang
Haozhe Si
Yue Liu
Han Zhao
OOD
128
35
0
30 Jan 2022
Transferability in Deep Learning: A Survey
Transferability in Deep Learning: A Survey
Junguang Jiang
Yang Shu
Jianmin Wang
Mingsheng Long
OOD
88
104
0
15 Jan 2022
Automated causal inference in application to randomized controlled
  clinical trials
Automated causal inference in application to randomized controlled clinical trials
Ji Q. Wu
N. Horeweg
M. de Bruyn
R. Nout
I. Jürgenliemk-Schulz
...
H. Nijman
V. Smit
T. Bosse
C. Creutzberg
V. Koelzer
CML
62
14
0
15 Jan 2022
Efficiently Disentangle Causal Representations
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Liang Zhao
Kenneth Church
OODCML
29
1
0
06 Jan 2022
Balancing Fairness and Robustness via Partial Invariance
Balancing Fairness and Robustness via Partial Invariance
Moulik Choraria
Ibtihal Ferwana
Ankur Mani
Lav Varshney
OOD
66
1
0
17 Dec 2021
FedDAG: Federated DAG Structure Learning
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
87
17
0
07 Dec 2021
Learning Invariant Representations with Missing Data
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
59
5
0
01 Dec 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation
  Perspective
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OODTTA
106
53
0
29 Nov 2021
Previous
123...1056789
Next