ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.02359
31
245

Structure Learning in Graphical Modeling

7 June 2016
Mathias Drton
Marloes H. Maathuis
    CML
ArXivPDFHTML
Abstract

A graphical model is a statistical model that is associated to a graph whose nodes correspond to variables of interest. The edges of the graph reflect allowed conditional dependencies among the variables. Graphical models admit computationally convenient factorization properties and have long been a valuable tool for tractable modeling of multivariate distributions. More recently, applications such as reconstructing gene regulatory networks from gene expression data have driven major advances in structure learning, that is, estimating the graph underlying a model. We review some of these advances and discuss methods such as the graphical lasso and neighborhood selection for undirected graphical models (or Markov random fields), and the PC algorithm and score-based search methods for directed graphical models (or Bayesian networks). We further review extensions that account for effects of latent variables and heterogeneous data sources.

View on arXiv
Comments on this paper