ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.8516
  4. Cited By
NICE: Non-linear Independent Components Estimation

NICE: Non-linear Independent Components Estimation

30 October 2014
Laurent Dinh
David M. Krueger
Yoshua Bengio
    DRL
    BDL
ArXivPDFHTML

Papers citing "NICE: Non-linear Independent Components Estimation"

50 / 518 papers shown
Title
ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An
Siyu Huang
Yibing Song
Dejing Dou
Wei Liu
Jiebo Luo
30
191
0
31 Mar 2021
iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless
  Compression
iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression
Shifeng Zhang
Chen Zhang
Ning Kang
Zhenguo Li
33
37
0
30 Mar 2021
Invertible Image Signal Processing
Invertible Image Signal Processing
Yazhou Xing
Zian Qian
Qifeng Chen
26
112
0
28 Mar 2021
Differentially Private Normalizing Flows for Privacy-Preserving Density
  Estimation
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
19
15
0
25 Mar 2021
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible
  Neural Networks
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks
Despoina Paschalidou
Angelos Katharopoulos
Andreas Geiger
Sanja Fidler
3DPC
3DV
3DH
29
113
0
18 Mar 2021
Flow-based Self-supervised Density Estimation for Anomalous Sound
  Detection
Flow-based Self-supervised Density Estimation for Anomalous Sound Detection
Kota Dohi
Takashi Endo
Harsh Purohit
Ryo Tanabe
Y. Kawaguchi
22
58
0
16 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
221
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
37
146
0
23 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
24
25
0
22 Feb 2021
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
29
50
0
20 Feb 2021
Learning Neural Generative Dynamics for Molecular Conformation
  Generation
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
34
116
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal
  Memory
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
Robust Classification using Hidden Markov Models and Mixtures of
  Normalizing Flows
Robust Classification using Hidden Markov Models and Mixtures of Normalizing Flows
Anubhab Ghosh
Antoine Honoré
Dong Liu
G. Henter
S. Chatterjee
BDL
VLM
35
7
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Colorization Transformer
Colorization Transformer
Manoj Kumar
Dirk Weissenborn
Nal Kalchbrenner
ViT
232
158
0
08 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
190
0
01 Feb 2021
Adversarial Text-to-Image Synthesis: A Review
Adversarial Text-to-Image Synthesis: A Review
Stanislav Frolov
Tobias Hinz
Federico Raue
Jörn Hees
Andreas Dengel
EGVM
27
175
0
25 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
627
0
22 Jan 2021
GAN Inversion: A Survey
GAN Inversion: A Survey
Weihao Xia
Yulun Zhang
Yujiu Yang
Jing-Hao Xue
Bolei Zhou
Ming-Hsuan Yang
DiffM
73
507
0
14 Jan 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
80
32
0
11 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
243
0
09 Jan 2021
Learning Disentangled Semantic Representation for Domain Adaptation
Learning Disentangled Semantic Representation for Domain Adaptation
Ruichu Cai
Zijian Li
Pengfei Wei
Jie Qiao
Kun Zhang
Zhifeng Hao
OOD
DRL
22
127
0
22 Dec 2020
Semi-Supervised Disentangled Framework for Transferable Named Entity
  Recognition
Semi-Supervised Disentangled Framework for Transferable Named Entity Recognition
Zhifeng Hao
Di Lv
Zijian Li
Ruichu Cai
Wen Wen
Boyan Xu
19
12
0
22 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
36
22
0
05 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
339
0
20 Nov 2020
Testing for Typicality with Respect to an Ensemble of Learned
  Distributions
Testing for Typicality with Respect to an Ensemble of Learned Distributions
F. Laine
Claire Tomlin
13
0
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
24
98
0
06 Nov 2020
Causal Autoregressive Flows
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Can We Trust Deep Speech Prior?
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
29
1
0
04 Nov 2020
On the Sentence Embeddings from Pre-trained Language Models
On the Sentence Embeddings from Pre-trained Language Models
Bohan Li
Hao Zhou
Junxian He
Mingxuan Wang
Yiming Yang
Lei Li
30
213
0
02 Nov 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
  Solution Characterization for Computational Imaging
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
25
74
0
27 Oct 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
32
41
0
26 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
17
39
0
25 Oct 2020
Dataset Dynamics via Gradient Flows in Probability Space
Dataset Dynamics via Gradient Flows in Probability Space
David Alvarez-Melis
Nicolò Fusi
31
18
0
24 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Probabilistic Character Motion Synthesis using a Hierarchical Deep
  Latent Variable Model
Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model
Saeed Ghorbani
C. Wloka
Ali Etemad
M. Brubaker
N. Troje
3DV
43
31
0
20 Oct 2020
Imitation with Neural Density Models
Imitation with Neural Density Models
Kuno Kim
Akshat Jindal
Yang Song
Jiaming Song
Yanan Sui
Stefano Ermon
41
12
0
19 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
112
46
0
19 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
34
14
0
07 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of
  Generative Model
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
Zhuonan He
Yikun Zhang
Yu Guan
S. Niu
Yi Zhang
Yang Chen
Qiegen Liu
DiffM
MedIm
33
12
0
27 Sep 2020
Learning Gradient Fields for Shape Generation
Learning Gradient Fields for Shape Generation
Ruojin Cai
Guandao Yang
Hadar Averbuch-Elor
Jinwei Gu
Serge J. Belongie
Noah Snavely
B. Hariharan
3DPC
19
280
0
14 Aug 2020
Invertible Neural BRDF for Object Inverse Rendering
Invertible Neural BRDF for Object Inverse Rendering
Zhe Chen
S. Nobuhara
Ko Nishino
BDL
AI4CE
40
26
0
10 Aug 2020
Previous
123...10116789
Next