Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1410.8516
Cited By
NICE: Non-linear Independent Components Estimation
30 October 2014
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NICE: Non-linear Independent Components Estimation"
50 / 518 papers shown
Title
ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An
Siyu Huang
Yibing Song
Dejing Dou
Wei Liu
Jiebo Luo
30
191
0
31 Mar 2021
iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression
Shifeng Zhang
Chen Zhang
Ning Kang
Zhenguo Li
33
37
0
30 Mar 2021
Invertible Image Signal Processing
Yazhou Xing
Zian Qian
Qifeng Chen
26
112
0
28 Mar 2021
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
19
15
0
25 Mar 2021
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks
Despoina Paschalidou
Angelos Katharopoulos
Andreas Geiger
Sanja Fidler
3DPC
3DV
3DH
29
113
0
18 Mar 2021
Flow-based Self-supervised Density Estimation for Anomalous Sound Detection
Kota Dohi
Takashi Endo
Harsh Purohit
Ryo Tanabe
Y. Kawaguchi
22
58
0
16 Mar 2021
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
221
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
48
485
0
08 Mar 2021
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
37
146
0
23 Feb 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
24
25
0
22 Feb 2021
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
29
50
0
20 Feb 2021
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
34
116
0
20 Feb 2021
Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara
Yuto Miyatake
Takaharu Yaguchi
23
23
0
19 Feb 2021
Robust Classification using Hidden Markov Models and Mixtures of Normalizing Flows
Anubhab Ghosh
Antoine Honoré
Dong Liu
G. Henter
S. Chatterjee
BDL
VLM
35
7
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Colorization Transformer
Manoj Kumar
Dirk Weissenborn
Nal Kalchbrenner
ViT
232
158
0
08 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
185
190
0
01 Feb 2021
Adversarial Text-to-Image Synthesis: A Review
Stanislav Frolov
Tobias Hinz
Federico Raue
Jörn Hees
Andreas Dengel
EGVM
27
175
0
25 Jan 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
627
0
22 Jan 2021
GAN Inversion: A Survey
Weihao Xia
Yulun Zhang
Yujiu Yang
Jing-Hao Xue
Bolei Zhou
Ming-Hsuan Yang
DiffM
73
507
0
14 Jan 2021
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
80
32
0
11 Jan 2021
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
243
0
09 Jan 2021
Learning Disentangled Semantic Representation for Domain Adaptation
Ruichu Cai
Zijian Li
Pengfei Wei
Jie Qiao
Kun Zhang
Zhifeng Hao
OOD
DRL
22
127
0
22 Dec 2020
Semi-Supervised Disentangled Framework for Transferable Named Entity Recognition
Zhifeng Hao
Di Lv
Zijian Li
Ruichu Cai
Wen Wen
Boyan Xu
19
12
0
22 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
96
0
10 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
36
22
0
05 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
56
339
0
20 Nov 2020
Testing for Typicality with Respect to an Ensemble of Learned Distributions
F. Laine
Claire Tomlin
13
0
0
11 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Wave-Tacotron: Spectrogram-free end-to-end text-to-speech synthesis
Ron J. Weiss
RJ Skerry-Ryan
Eric Battenberg
Soroosh Mariooryad
Diederik P. Kingma
24
98
0
06 Nov 2020
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Can We Trust Deep Speech Prior?
Ying Shi
Haolin Chen
Zhiyuan Tang
Lantian Li
Dong Wang
Jiqing Han
29
1
0
04 Nov 2020
On the Sentence Embeddings from Pre-trained Language Models
Bohan Li
Hao Zhou
Junxian He
Mingxuan Wang
Yiming Yang
Lei Li
30
213
0
02 Nov 2020
Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal Solution Characterization for Computational Imaging
He Sun
Katherine Bouman
UQCV
25
74
0
27 Oct 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
32
41
0
26 Oct 2020
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
26
9
0
26 Oct 2020
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
17
39
0
25 Oct 2020
Dataset Dynamics via Gradient Flows in Probability Space
David Alvarez-Melis
Nicolò Fusi
31
18
0
24 Oct 2020
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model
Saeed Ghorbani
C. Wloka
Ali Etemad
M. Brubaker
N. Troje
3DV
43
31
0
20 Oct 2020
Imitation with Neural Density Models
Kuno Kim
Akshat Jindal
Yang Song
Jiaming Song
Yanan Sui
Stefano Ermon
41
12
0
19 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
112
46
0
19 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
34
14
0
07 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Iterative Reconstruction for Low-Dose CT using Deep Gradient Priors of Generative Model
Zhuonan He
Yikun Zhang
Yu Guan
S. Niu
Yi Zhang
Yang Chen
Qiegen Liu
DiffM
MedIm
33
12
0
27 Sep 2020
Learning Gradient Fields for Shape Generation
Ruojin Cai
Guandao Yang
Hadar Averbuch-Elor
Jinwei Gu
Serge J. Belongie
Noah Snavely
B. Hariharan
3DPC
19
280
0
14 Aug 2020
Invertible Neural BRDF for Object Inverse Rendering
Zhe Chen
S. Nobuhara
Ko Nishino
BDL
AI4CE
40
26
0
10 Aug 2020
Previous
1
2
3
...
10
11
6
7
8
9
Next