Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1410.8516
Cited By
NICE: Non-linear Independent Components Estimation
30 October 2014
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NICE: Non-linear Independent Components Estimation"
50 / 514 papers shown
Title
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
Animesh Karnewar
Oliver Wang
GAN
16
50
0
14 Mar 2019
Hierarchical Autoregressive Image Models with Auxiliary Decoders
J. Fauw
Sander Dieleman
Karen Simonyan
GAN
30
37
0
06 Mar 2019
VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar
Mohammad Babaeizadeh
D. Erhan
Chelsea Finn
Sergey Levine
Laurent Dinh
Durk Kingma
VGen
25
131
0
04 Mar 2019
Video Extrapolation with an Invertible Linear Embedding
Robert Pottorff
Jared Nielsen
David Wingate
30
5
0
01 Mar 2019
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs
A. Gholami
Kurt Keutzer
George Biros
30
166
0
27 Feb 2019
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
22
99
0
07 Feb 2019
Improving Evolutionary Strategies with Generative Neural Networks
Louis Faury
Clément Calauzènes
Olivier Fercoq
Syrine Krichene
27
12
0
31 Jan 2019
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
24
98
0
30 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
27
36
0
24 Jan 2019
Coupling the reduced-order model and the generative model for an importance sampling estimator
Xiaoliang Wan
Shuangqing Wei
16
10
0
23 Jan 2019
Understanding the (un)interpretability of natural image distributions using generative models
Ryen Krusinga
Sohil Shah
Matthias Zwicker
Tom Goldstein
David Jacobs
DiffM
FAtt
GAN
28
11
0
06 Jan 2019
StoryGAN: A Sequential Conditional GAN for Story Visualization
Yitong Li
Zhe Gan
Yelong Shen
Jingjing Liu
Yu Cheng
Yuexin Wu
Lawrence Carin
David Carlson
Jianfeng Gao
41
226
0
06 Dec 2018
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples with Applications to Neuroimaging
Seong Jae Hwang
Zirui Tao
Won Hwa Kim
Vikas Singh
MedIm
33
12
0
24 Nov 2018
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
37
618
0
02 Nov 2018
WaveGlow: A Flow-based Generative Network for Speech Synthesis
R. Prenger
Rafael Valle
Bryan Catanzaro
87
1,023
0
31 Oct 2018
Towards Principled Uncertainty Estimation for Deep Neural Networks
Richard E. Harang
Ethan M. Rudd
BDL
UQCV
30
6
0
29 Oct 2018
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
20
82
0
02 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
17
851
0
02 Oct 2018
Boosting Trust Region Policy Optimization by Normalizing Flows Policy
Yunhao Tang
Shipra Agrawal
TPM
39
29
0
27 Sep 2018
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
28
62
0
26 Sep 2018
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
84
2,640
0
20 Aug 2018
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
21
484
0
14 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
55
3,085
0
09 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
110
4,960
0
19 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
38
44
0
12 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
181
0
30 May 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
39
121
0
28 May 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
31
433
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
18
249
0
15 Mar 2018
Quantitatively Evaluating GANs With Divergences Proposed for Training
Daniel Jiwoong Im
He Ma
Graham W. Taylor
K. Branson
EGVM
19
69
0
02 Mar 2018
Disentangling the independently controllable factors of variation by interacting with the world
Valentin Thomas
Emmanuel Bengio
W. Fedus
Jules Pondard
Philippe Beaudoin
Hugo Larochelle
Joelle Pineau
Doina Precup
Yoshua Bengio
DRL
CoGe
CML
24
61
0
26 Feb 2018
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
35
112
0
23 Feb 2018
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
52
333
0
20 Feb 2018
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
37
125
0
08 Feb 2018
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric Xing
J. Schneider
OOD
28
86
0
30 Jan 2018
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
38
856
0
28 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Learning Independent Features with Adversarial Nets for Non-linear ICA
Philemon Brakel
Yoshua Bengio
OOD
CML
27
93
0
13 Oct 2017
Learnable Explicit Density for Continuous Latent Space and Variational Inference
Chin-Wei Huang
Ahmed Touati
Laurent Dinh
M. Drozdzal
Mohammad Havaei
Laurent Charlin
Aaron Courville
BDL
DRL
45
28
0
06 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
36
261
0
12 Sep 2017
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
27
268
0
06 Sep 2017
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
32
109
0
23 Jun 2017
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
41
214
0
31 May 2017
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Aditya Grover
Manik Dhar
Stefano Ermon
GAN
39
24
0
24 May 2017
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
46
758
0
15 Mar 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
19
933
0
19 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
49
525
0
17 Jan 2017
Previous
1
2
3
...
10
11
9
Next