ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.2294
  4. Cited By
Expectation Propagation for approximate Bayesian inference

Expectation Propagation for approximate Bayesian inference

10 January 2013
T. Minka
ArXivPDFHTML

Papers citing "Expectation Propagation for approximate Bayesian inference"

50 / 491 papers shown
Title
On the role of synaptic stochasticity in training low-precision neural
  networks
On the role of synaptic stochasticity in training low-precision neural networks
Carlo Baldassi
Federica Gerace
H. Kappen
C. Lucibello
Luca Saglietti
Enzo Tartaglione
R. Zecchina
9
23
0
26 Oct 2017
Scalable Bayesian regression in high dimensions with multiple data
  sources
Scalable Bayesian regression in high dimensions with multiple data sources
K. Perrakis
S. Mukherjee
The Alzheimer's Disease Neuroimaging Initiative
24
4
0
02 Oct 2017
Remote Sensing Image Classification with Large Scale Gaussian Processes
Remote Sensing Image Classification with Large Scale Gaussian Processes
Pablo Morales-Álvarez
Adrián Pérez-Suay
Rafael Molina
Gustau Camps-Valls
14
41
0
02 Oct 2017
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
24
32
0
26 Sep 2017
Approximate Bayesian Inference in Linear State Space Models for
  Intermittent Demand Forecasting at Scale
Approximate Bayesian Inference in Linear State Space Models for Intermittent Demand Forecasting at Scale
Matthias Seeger
Syama Sundar Rangapuram
Bernie Wang
David Salinas
Jan Gasthaus
Tim Januschowski
Valentin Flunkert
BDL
40
18
0
22 Sep 2017
Variational Gaussian Approximation for Poisson Data
Variational Gaussian Approximation for Poisson Data
Simon Arridge
Kazufumi Ito
Bangti Jin
Chen Zhang
6
22
0
18 Sep 2017
Variational Inference for Logical Inference
Variational Inference for Logical Inference
Guy Edward Toh Emerson
Ann A. Copestake
NAI
26
7
0
01 Sep 2017
Learning Inference Models for Computer Vision
Learning Inference Models for Computer Vision
Varun Jampani
BDL
22
1
0
31 Aug 2017
Towards Bursting Filter Bubble via Contextual Risks and Uncertainties
Towards Bursting Filter Bubble via Contextual Risks and Uncertainties
Rikiya Takahashi
Shunan Zhang
6
1
0
30 Jun 2017
Scalable Multi-Class Gaussian Process Classification using Expectation
  Propagation
Scalable Multi-Class Gaussian Process Classification using Expectation Propagation
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
18
19
0
22 Jun 2017
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
8
216
0
20 Jun 2017
On the correspondence between thermodynamics and inference
On the correspondence between thermodynamics and inference
Colin H. LaMont
Paul A. Wiggins
15
26
0
05 Jun 2017
Streaming Bayesian inference: theoretical limits and mini-batch
  approximate message-passing
Streaming Bayesian inference: theoretical limits and mini-batch approximate message-passing
Andre Manoel
Florent Krzakala
Eric W. Tramel
Lenka Zdeborová
27
13
0
02 Jun 2017
A statistical physics approach to learning curves for the Inverse Ising
  problem
A statistical physics approach to learning curves for the Inverse Ising problem
Ludovica Bachschmid-Romano
Manfred Opper
33
13
0
15 May 2017
Nonlinear Kalman Filtering with Divergence Minimization
Nonlinear Kalman Filtering with Divergence Minimization
San Gultekin
John Paisley
16
40
0
01 May 2017
Structured Sparse Modelling with Hierarchical GP
Structured Sparse Modelling with Hierarchical GP
Danil Kuzin
Olga Isupova
Lyudmila Mihaylova
9
1
0
27 Apr 2017
Continuously tempered Hamiltonian Monte Carlo
Continuously tempered Hamiltonian Monte Carlo
Matthew M. Graham
Amos J. Storkey
27
26
0
11 Apr 2017
Practical Bayesian Optimization for Variable Cost Objectives
Practical Bayesian Optimization for Variable Cost Objectives
Mark McLeod
Michael A. Osborne
Stephen J. Roberts
17
32
0
13 Mar 2017
Conjugate-Computation Variational Inference : Converting Variational
  Inference in Non-Conjugate Models to Inferences in Conjugate Models
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Mohammad Emtiyaz Khan
Wu Lin
BDL
19
135
0
13 Mar 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
46
195
0
08 Mar 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
16
453
0
06 Mar 2017
Iterative Bayesian Learning for Crowdsourced Regression
Iterative Bayesian Learning for Crowdsourced Regression
Jungseul Ok
Sewoong Oh
Yunhun Jang
Jinwoo Shin
Yung Yi
21
3
0
28 Feb 2017
Approximate Inference with Amortised MCMC
Approximate Inference with Amortised MCMC
Yingzhen Li
Richard Turner
Qiang Liu
BDL
19
61
0
27 Feb 2017
Variational Inference using Implicit Distributions
Variational Inference using Implicit Distributions
Ferenc Huszár
DRL
GAN
11
135
0
27 Feb 2017
Probabilistic Sensor Fusion for Ambient Assisted Living
Probabilistic Sensor Fusion for Ambient Assisted Living
Tom Diethe
Niall Twomey
Meelis Kull
Peter A. Flach
I. Craddock
11
22
0
04 Feb 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
33
193
0
13 Jan 2017
Conditional Central Limit Theorems for Gaussian Projections
Conditional Central Limit Theorems for Gaussian Projections
Galen Reeves
16
25
0
29 Dec 2016
Expectation Propagation performs a smoothed gradient descent
Expectation Propagation performs a smoothed gradient descent
Guillaume P. Dehaene
BDL
UQCV
6
3
0
15 Dec 2016
Adversarial Message Passing For Graphical Models
Adversarial Message Passing For Graphical Models
Theofanis Karaletsos
GAN
24
29
0
15 Dec 2016
Knowledge Elicitation via Sequential Probabilistic Inference for
  High-Dimensional Prediction
Knowledge Elicitation via Sequential Probabilistic Inference for High-Dimensional Prediction
Pedram Daee
Tomi Peltola
Marta Soare
Samuel Kaski
14
33
0
10 Dec 2016
Improved prediction accuracy for disease risk mapping using Gaussian
  Process stacked generalisation
Improved prediction accuracy for disease risk mapping using Gaussian Process stacked generalisation
Samir Bhatt
E. Cameron
Seth R Flaxman
D. Weiss
David L. Smith
P. Gething
18
104
0
10 Dec 2016
Structured Filtering
Structured Filtering
C. Granade
N. Wiebe
19
6
0
01 Dec 2016
Inference for log Gaussian Cox processes using an approximate marginal
  posterior
Inference for log Gaussian Cox processes using an approximate marginal posterior
Shinichiro Shirota
A. Gelfand
21
7
0
30 Nov 2016
On numerical approximation schemes for expectation propagation
On numerical approximation schemes for expectation propagation
A. Roche
22
0
0
14 Nov 2016
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
81
36
0
01 Nov 2016
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
16
300
0
31 Oct 2016
Moment Matching Based Conjugacy Approximation for Bayesian Ranking and
  Selection
Moment Matching Based Conjugacy Approximation for Bayesian Ranking and Selection
Qiong Zhang
Yongjia Song
17
10
0
28 Oct 2016
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
15
116
0
27 Oct 2016
Optimal Encoding and Decoding for Point Process Observations: an
  Approximate Closed-Form Filter
Optimal Encoding and Decoding for Point Process Observations: an Approximate Closed-Form Filter
Y. Harel
Ron Meir
Manfred Opper
12
3
0
12 Sep 2016
Importance sampling type estimators based on approximate marginal MCMC
Importance sampling type estimators based on approximate marginal MCMC
M. Vihola
Jouni Helske
Jordan Franks
21
25
0
08 Sep 2016
Predictive Entropy Search for Multi-objective Bayesian Optimization with
  Constraints
Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints
Daniel Hernández-Lobato
Daniel Hernández-Lobato
18
113
0
05 Sep 2016
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
23
28
0
02 Sep 2016
Skew-t Filter and Smoother with Improved Covariance Matrix Approximation
Skew-t Filter and Smoother with Improved Covariance Matrix Approximation
Henri Nurminen
Tohid Ardeshiri
R. Piché
Fredrik K. Gustafsson
12
44
0
26 Aug 2016
Self-Averaging Expectation Propagation
Self-Averaging Expectation Propagation
Burak Çakmak
Manfred Opper
B. Fleury
Ole Winther
22
9
0
23 Aug 2016
The Bayesian Low-Rank Determinantal Point Process Mixture Model
The Bayesian Low-Rank Determinantal Point Process Mixture Model
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
BDL
16
0
0
15 Aug 2016
Branching Gaussian Processes with Applications to Spatiotemporal
  Reconstruction of 3D Trees
Branching Gaussian Processes with Applications to Spatiotemporal Reconstruction of 3D Trees
K. Simek
R. Palanivelu
Kobus Barnard
11
5
0
14 Aug 2016
From Dependence to Causation
From Dependence to Causation
David Lopez-Paz
OOD
CML
58
25
0
12 Jul 2016
Approximate Marginal Posterior for Log Gaussian Cox Processes
Shinichiro Shirota
A. Gelfand
18
2
0
26 Jun 2016
Post-Inference Prior Swapping
Post-Inference Prior Swapping
W. Neiswanger
Eric P. Xing
14
1
0
02 Jun 2016
Applications of Probabilistic Programming (Master's thesis, 2015)
Applications of Probabilistic Programming (Master's thesis, 2015)
Yura N. Perov
21
4
0
31 May 2016
Previous
123...106789
Next