ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.07435
12
44

Skew-t Filter and Smoother with Improved Covariance Matrix Approximation

26 August 2016
Henri Nurminen
Tohid Ardeshiri
R. Piché
Fredrik K. Gustafsson
ArXivPDFHTML
Abstract

Filtering and smoothing algorithms for linear discrete-time state-space models with skew-t-distributed measurement noise are proposed. The algorithms use a variational Bayes based posterior approximation with coupled location and skewness variables to reduce the error caused by the variational approximation. Although the variational update is done suboptimally using an expectation propagation algorithm, our simulations show that the proposed method gives a more accurate approximation of the posterior covariance matrix than an earlier proposed variational algorithm. Consequently, the novel filter and smoother outperform the earlier proposed robust filter and smoother and other existing low-complexity alternatives in accuracy and speed. We present both simulations and tests based on real-world navigation data, in particular GPS data in an urban area, to demonstrate the performance of the novel methods. Moreover, the extension of the proposed algorithms to cover the case where the distribution of the measurement noise is multivariate skew-ttt is outlined. Finally, the paper presents a study of theoretical performance bounds for the proposed algorithms.

View on arXiv
Comments on this paper