ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.2294
  4. Cited By
Expectation Propagation for approximate Bayesian inference

Expectation Propagation for approximate Bayesian inference

10 January 2013
T. Minka
ArXivPDFHTML

Papers citing "Expectation Propagation for approximate Bayesian inference"

50 / 491 papers shown
Title
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
21
64
0
31 May 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
24
545
0
23 May 2016
Variational Inference with Agent-Based Models
Variational Inference with Agent-Based Models
Wen Dong
23
3
0
14 May 2016
Scalable Gaussian Processes for Supervised Hashing
Scalable Gaussian Processes for Supervised Hashing
B. Ozdemir
L. Davis
19
2
0
25 Apr 2016
Constructive Preference Elicitation by Setwise Max-margin Learning
Constructive Preference Elicitation by Setwise Max-margin Learning
Stefano Teso
Andrea Passerini
P. Viappiani
17
24
0
20 Apr 2016
Probabilistic Receiver Architecture Combining BP, MF, and EP for
  Multi-Signal Detection
Probabilistic Receiver Architecture Combining BP, MF, and EP for Multi-Signal Detection
S. M. I. Daniel J. Jakubisin
S. M. I. R. Michael Buehrer
S. M. I. Claudio R. C. M. da Silva
18
7
0
17 Apr 2016
A sequential Monte Carlo approach to Thompson sampling for Bayesian
  optimization
A sequential Monte Carlo approach to Thompson sampling for Bayesian optimization
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
9
25
0
01 Apr 2016
Hierarchical Gaussian Mixture Model with Objects Attached to Terminal
  and Non-terminal Dendrogram Nodes
Hierarchical Gaussian Mixture Model with Objects Attached to Terminal and Non-terminal Dendrogram Nodes
Lukasz P. Olech
M. Paradowski
16
10
0
28 Mar 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
22
253
0
15 Mar 2016
A Poisson process model for Monte Carlo
A Poisson process model for Monte Carlo
Chris J. Maddison
8
22
0
18 Feb 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
22
87
0
16 Feb 2016
Online Low-Rank Subspace Learning from Incomplete Data: A Bayesian View
Online Low-Rank Subspace Learning from Incomplete Data: A Bayesian View
Paris V. Giampouras
A. Rontogiannis
K. Themelis
K. Koutroumbas
20
2
0
11 Feb 2016
Binarized Neural Networks
Itay Hubara
Daniel Soudry
Ran El-Yaniv
MQ
35
1,351
0
08 Feb 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
32
258
0
06 Feb 2016
Bounding errors of Expectation-Propagation
Bounding errors of Expectation-Propagation
Guillaume P. Dehaene
Simon Barthelmé
11
25
0
11 Jan 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
23
4,705
0
04 Jan 2016
Multimodal, high-dimensional, model-based, Bayesian inverse problems
  with applications in biomechanics
Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics
F. Monmont
P. Koutsourelakis
21
17
0
14 Dec 2015
Divide and conquer in ABC: Expectation-Progagation algorithms for
  likelihood-free inference
Divide and conquer in ABC: Expectation-Progagation algorithms for likelihood-free inference
Simon Barthelmé
Nicolas Chopin
V. Cottet
13
10
0
01 Dec 2015
A General Framework for Constrained Bayesian Optimization using
  Information-based Search
A General Framework for Constrained Bayesian Optimization using Information-based Search
José Miguel Hernández-Lobato
M. Gelbart
Ryan P. Adams
Matthew W. Hoffman
Zoubin Ghahramani
27
162
0
30 Nov 2015
Bayesian inference via rejection filtering
Bayesian inference via rejection filtering
N. Wiebe
C. Granade
Ashish Kapoor
K. Svore
BDL
14
9
0
20 Nov 2015
Principled Parallel Mean-Field Inference for Discrete Random Fields
Principled Parallel Mean-Field Inference for Discrete Random Fields
Pierre Baqué
Timur M. Bagautdinov
F. Fleuret
Pascal Fua
FedML
18
25
0
19 Nov 2015
Predictive Entropy Search for Multi-objective Bayesian Optimization
Predictive Entropy Search for Multi-objective Bayesian Optimization
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Amar Shah
Ryan P. Adams
16
185
0
17 Nov 2015
Stochastic Expectation Propagation for Large Scale Gaussian Process
  Classification
Stochastic Expectation Propagation for Large Scale Gaussian Process Classification
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
Yingzhen Li
T. Bui
Richard Turner
BDL
25
0
0
10 Nov 2015
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
21
137
0
10 Nov 2015
BinaryConnect: Training Deep Neural Networks with binary weights during
  propagations
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
6
2,969
0
02 Nov 2015
Time-Sensitive Bayesian Information Aggregation for Crowdsourcing
  Systems
Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems
M. Venanzi
J. Guiver
Pushmeet Kohli
N. Jennings
12
32
0
21 Oct 2015
GLASSES: Relieving The Myopia Of Bayesian Optimisation
GLASSES: Relieving The Myopia Of Bayesian Optimisation
Javier I. González
Michael A. Osborne
Neil D. Lawrence
8
119
0
21 Oct 2015
Distilling Model Knowledge
Distilling Model Knowledge
George Papamakarios
BDL
24
17
0
08 Oct 2015
Bayesian Inference via Approximation of Log-likelihood for Priors in
  Exponential Family
Bayesian Inference via Approximation of Log-likelihood for Priors in Exponential Family
Tohid Ardeshiri
U. Orguner
Fredrik K. Gustafsson
33
10
0
05 Oct 2015
A Geometric View of Posterior Approximation
A Geometric View of Posterior Approximation
T. Chen
J. Streets
Babak Shahbaba
26
5
0
03 Oct 2015
Gibbs flow for approximate transport with applications to Bayesian
  computation
Gibbs flow for approximate transport with applications to Bayesian computation
J. Heng
Arnaud Doucet
Y. Pokern
OT
21
46
0
29 Sep 2015
Tractable Fully Bayesian Inference via Convex Optimization and Optimal
  Transport Theory
Tractable Fully Bayesian Inference via Convex Optimization and Optimal Transport Theory
Sanggyun Kim
Diego A. Mesa
Rui Ma
Todd P. Coleman
9
4
0
29 Sep 2015
Bayesian inference for spatio-temporal spike-and-slab priors
Bayesian inference for spatio-temporal spike-and-slab priors
Michael Riis Andersen
Aki Vehtari
Ole Winther
Lars Kai Hansen
18
32
0
15 Sep 2015
Lazy Factored Inference for Functional Probabilistic Programming
Lazy Factored Inference for Functional Probabilistic Programming
Avi Pfeffer
Brian E. Ruttenberg
A. Sliva
Michael Howard
Glenn Takata
TPM
11
1
0
11 Sep 2015
Spatio-temporal Spike and Slab Priors for Multiple Measurement Vector
  Problems
Spatio-temporal Spike and Slab Priors for Multiple Measurement Vector Problems
Michael Riis Andersen
Ole Winther
Lars Kai Hansen
18
3
0
19 Aug 2015
From Cutting Planes Algorithms to Compression Schemes and Active
  Learning
From Cutting Planes Algorithms to Compression Schemes and Active Learning
L. Ralaivola
Ugo Louche
11
5
0
12 Aug 2015
An Analytically Tractable Bayesian Approximation to Optimal Point
  Process Filtering
An Analytically Tractable Bayesian Approximation to Optimal Point Process Filtering
Y. Harel
Ron Meir
Manfred Opper
18
0
0
28 Jul 2015
Sparse Probit Linear Mixed Model
Sparse Probit Linear Mixed Model
Stephan Mandt
F. Wenzel
Shinichi Nakajima
John P. Cunningham
C. Lippert
Marius Kloft
23
11
0
16 Jul 2015
Scalable Gaussian Process Classification via Expectation Propagation
Scalable Gaussian Process Classification via Expectation Propagation
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
27
52
0
16 Jul 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
37
75
0
29 Jun 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic
  Algorithms
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
23
20
0
24 Jun 2015
Expectation Particle Belief Propagation
Expectation Particle Belief Propagation
Thibaut Lienart
Yee Whye Teh
Arnaud Doucet
19
24
0
19 Jun 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
21
114
0
12 Jun 2015
Neural Adaptive Sequential Monte Carlo
Neural Adaptive Sequential Monte Carlo
S. Gu
Zoubin Ghahramani
Richard Turner
BDL
16
145
0
10 Jun 2015
Performing Bayesian Risk Aggregation using Discrete Approximation
  Algorithms with Graph Factorization
Performing Bayesian Risk Aggregation using Discrete Approximation Algorithms with Graph Factorization
Peng Lin
16
4
0
02 Jun 2015
A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter
Manuel Wüthrich
Sebastian Trimpe
Daniel Kappler
S. Schaal
45
25
0
29 Apr 2015
Expectation Propagation in the large-data limit
Expectation Propagation in the large-data limit
Guillaume P. Dehaene
Simon Barthelmé
16
44
0
27 Mar 2015
Bayesian computation: a perspective on the current state, and sampling
  backwards and forwards
Bayesian computation: a perspective on the current state, and sampling backwards and forwards
P. Green
K. Latuszyñski
Marcelo Pereyra
Christian P. Robert
45
21
0
04 Feb 2015
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
54
159
0
17 Dec 2014
Expectation propagation as a way of life: A framework for Bayesian
  inference on partitioned data
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Aki Vehtari
Andrew Gelman
Tuomas Sivula
Pasi Jylänki
Dustin Tran
Swupnil Sahai
Paul Blomstedt
John P. Cunningham
D. Schiminovich
Christian P. Robert
26
18
0
16 Dec 2014
Previous
123...10789
Next