ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.2294
  4. Cited By
Expectation Propagation for approximate Bayesian inference

Expectation Propagation for approximate Bayesian inference

10 January 2013
T. Minka
ArXivPDFHTML

Papers citing "Expectation Propagation for approximate Bayesian inference"

50 / 491 papers shown
Title
Featuremetric benchmarking: Quantum computer benchmarks based on circuit features
Featuremetric benchmarking: Quantum computer benchmarks based on circuit features
Timothy Proctor
Anh Tran
Xingxin Liu
Aditya Dhumuntarao
Stefan Seritan
Alaina Green
Norbert M Linke
29
0
0
17 Apr 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
62
1
0
10 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
94
2
0
04 Feb 2025
Pareto-frontier Entropy Search with Variational Lower Bound Maximization
Pareto-frontier Entropy Search with Variational Lower Bound Maximization
Masanori Ishikura
Masayuki Karasuyama
63
0
0
31 Jan 2025
Unifying AMP Algorithms for Rotationally-Invariant Models
Unifying AMP Algorithms for Rotationally-Invariant Models
Songbin Liu
Junjie Ma
77
0
0
02 Dec 2024
Prediction of Acoustic Communication Performance for AUVs using Gaussian
  Process Classification
Prediction of Acoustic Communication Performance for AUVs using Gaussian Process Classification
Yifei Gao
Harun Yetkin
McMahon James
D. Stilwell
21
0
0
12 Nov 2024
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow
  Perspective
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
68
1
0
31 Oct 2024
Batched Bayesian optimization by maximizing the probability of including the optimum
Batched Bayesian optimization by maximizing the probability of including the optimum
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
47
0
0
08 Oct 2024
Skew-symmetric approximations of posterior distributions
Skew-symmetric approximations of posterior distributions
Francesco Pozza
Daniele Durante
Botond Szabó
39
2
0
21 Sep 2024
Computationally Efficient Estimation of Large Probit Models
Computationally Efficient Estimation of Large Probit Models
Patrick Ding
Guido Imbens
Zhaonan Qu
Yinyu Ye
29
0
0
12 Jul 2024
Scalable expectation propagation for generalized linear models
Scalable expectation propagation for generalized linear models
Niccolò Anceschi
A. Fasano
Beatrice Franzolini
Giovanni Rebaudo
35
0
0
02 Jul 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
29
2
0
06 Jun 2024
Exploring the Practicality of Federated Learning: A Survey Towards the
  Communication Perspective
Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective
Khiem H. Le
Nhan Luong-Ha
Manh Nguyen-Duc
Danh Le-Phuoc
Cuong D. Do
Kok-Seng Wong
FedML
29
1
0
30 May 2024
Robust Entropy Search for Safe Efficient Bayesian Optimization
Robust Entropy Search for Safe Efficient Bayesian Optimization
D. Weichert
Alexander Kister
Sebastian Houben
Patrick Link
G. Ernis
AAML
57
0
0
29 May 2024
Variational Bayes for Federated Continual Learning
Variational Bayes for Federated Continual Learning
Dezhong Yao
Sanmu Li
Yutong Dai
Zhiqiang Xu
Shengshan Hu
Peilin Zhao
Lichao Sun
FedML
56
1
0
23 May 2024
Doubly Adaptive Importance Sampling
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
26
0
0
29 Apr 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
24
0
0
16 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Circular Belief Propagation for Approximate Probabilistic Inference
Circular Belief Propagation for Approximate Probabilistic Inference
Vincent Bouttier
R. Jardri
S. Denéve
25
0
0
17 Mar 2024
Stacking Factorizing Partitioned Expressions in Hybrid Bayesian Network
  Models
Stacking Factorizing Partitioned Expressions in Hybrid Bayesian Network Models
Peng Lin
M. Neil
Norman E. Fenton
20
0
0
23 Feb 2024
Safe Active Learning for Time-Series Modeling with Gaussian Processes
Safe Active Learning for Time-Series Modeling with Gaussian Processes
Christoph Zimmer
Mona Meister
D. Nguyen-Tuong
AI4TS
27
52
0
09 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
32
4
0
06 Feb 2024
Bootstrap Your Own Variance
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
26
0
0
06 Dec 2023
Constrained Bayesian Optimization Under Partial Observations: Balanced
  Improvements and Provable Convergence
Constrained Bayesian Optimization Under Partial Observations: Balanced Improvements and Provable Convergence
Shengbo Wang
Ke Li
18
11
0
06 Dec 2023
Entropy and the Kullback-Leibler Divergence for Bayesian Networks:
  Computational Complexity and Efficient Implementation
Entropy and the Kullback-Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation
Marco Scutari
16
2
0
29 Nov 2023
Multi-Objective Bayesian Optimization with Active Preference Learning
Multi-Objective Bayesian Optimization with Active Preference Learning
Ryota Ozaki
Kazuki Ishikawa
Youhei Kanzaki
Shinya Suzuki
Shion Takeno
Ichiro Takeuchi
Masayuki Karasuyama
25
7
0
22 Nov 2023
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor
  Data
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Shikai Fang
Xin Yu
Zheng Wang
Shibo Li
R. Kirby
Shandian Zhe
24
1
0
08 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
Riemannian Laplace Approximation with the Fisher Metric
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
M. Girolami
Arto Klami
32
3
0
05 Nov 2023
Variational Inference for Sparse Poisson Regression
Variational Inference for Sparse Poisson Regression
Mitra Kharabati
Morteza Amini
32
1
0
02 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient
  Flows
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
Streaming Factor Trajectory Learning for Temporal Tensor Decomposition
Streaming Factor Trajectory Learning for Temporal Tensor Decomposition
Shikai Fang
Xin Yu
Shibo Li
Zheng Wang
R. Kirby
Shandian Zhe
AI4TS
27
3
0
25 Oct 2023
PRIOR: Personalized Prior for Reactivating the Information Overlooked in
  Federated Learning
PRIOR: Personalized Prior for Reactivating the Information Overlooked in Federated Learning
Mingjia Shi
Yuhao Zhou
Kai Wang
Huaizheng Zhang
Shudong Huang
Qing Ye
Jiangcheng Lv
26
9
0
13 Oct 2023
LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
  Time Series Anomaly Detection
LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection
Feiyi Chen
Zhen Qin
Yingying Zhang
Shuiguang Deng
Lunting Fan
Guansong Pang
Qingsong Wen
AI4TS
14
6
0
09 Oct 2023
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient
  Kernels
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
18
0
0
09 Oct 2023
Inferring Inference
Inferring Inference
Rajkumar Vasudeva Raju
Zhe Li
Scott W. Linderman
Xaq Pitkow
22
1
0
04 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
40
0
04 Oct 2023
An Easy Rejection Sampling Baseline via Gradient Refined Proposals
An Easy Rejection Sampling Baseline via Gradient Refined Proposals
Edward Raff
Mark McLean
James Holt
15
0
0
30 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
  Diffusion Models in High-Dimensional Graphical Models
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
31
26
0
20 Sep 2023
Total Variation Distance Meets Probabilistic Inference
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
Sutanu Gayen
Kuldeep S. Meel
Dimitrios Myrisiotis
A. Pavan
N. V. Vinodchandran
13
4
0
17 Sep 2023
Amortised Inference in Bayesian Neural Networks
Amortised Inference in Bayesian Neural Networks
Tommy Rochussen
UQCV
BDL
28
0
0
06 Sep 2023
Expectation propagation for the smoothing distribution in dynamic probit
Expectation propagation for the smoothing distribution in dynamic probit
Niccolò Anceschi
A. Fasano
Giovanni Rebaudo
27
0
0
04 Sep 2023
BayOTIDE: Bayesian Online Multivariate Time series Imputation with
  functional decomposition
BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition
Shikai Fang
Qingsong Wen
Yingtao Luo
Shandian Zhe
Liang Sun
AI4TS
27
5
0
28 Aug 2023
A State-Space Perspective on Modelling and Inference for Online Skill
  Rating
A State-Space Perspective on Modelling and Inference for Online Skill Rating
Samuel Duffield
Samuel Power
Lorenzo Rimella
18
6
0
04 Aug 2023
Variational Inference with Gaussian Score Matching
Variational Inference with Gaussian Score Matching
Chirag Modi
C. Margossian
Yuling Yao
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
16
12
0
15 Jul 2023
Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual
  Prostheses
Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual Prostheses
Jacob Granley
T. Fauvel
M. Chalk
M. Beyeler
13
9
0
16 Jun 2023
Realising Synthetic Active Inference Agents, Part I: Epistemic
  Objectives and Graphical Specification Language
Realising Synthetic Active Inference Agents, Part I: Epistemic Objectives and Graphical Specification Language
Magnus T. Koudahl
T. V. D. Laar
Bert De Vries
24
1
0
13 Jun 2023
Automating Model Comparison in Factor Graphs
Automating Model Comparison in Factor Graphs
Bart Van Erp
Wouter W. L. Nuijten
T. V. D. Laar
Bert De Vries
16
1
0
09 Jun 2023
Improving Hyperparameter Learning under Approximate Inference in
  Gaussian Process Models
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
20
3
0
07 Jun 2023
Variational Gaussian Process Diffusion Processes
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
22
5
0
03 Jun 2023
On the Convergence of Coordinate Ascent Variational Inference
On the Convergence of Coordinate Ascent Variational Inference
A. Bhattacharya
D. Pati
Yun Yang
17
10
0
01 Jun 2023
1234...8910
Next