Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.2294
Cited By
Expectation Propagation for approximate Bayesian inference
10 January 2013
T. Minka
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Expectation Propagation for approximate Bayesian inference"
50 / 491 papers shown
Title
Featuremetric benchmarking: Quantum computer benchmarks based on circuit features
Timothy Proctor
Anh Tran
Xingxin Liu
Aditya Dhumuntarao
Stefan Seritan
Alaina Green
Norbert M Linke
29
0
0
17 Apr 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
62
1
0
10 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
94
2
0
04 Feb 2025
Pareto-frontier Entropy Search with Variational Lower Bound Maximization
Masanori Ishikura
Masayuki Karasuyama
63
0
0
31 Jan 2025
Unifying AMP Algorithms for Rotationally-Invariant Models
Songbin Liu
Junjie Ma
77
0
0
02 Dec 2024
Prediction of Acoustic Communication Performance for AUVs using Gaussian Process Classification
Yifei Gao
Harun Yetkin
McMahon James
D. Stilwell
21
0
0
12 Nov 2024
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
68
1
0
31 Oct 2024
Batched Bayesian optimization by maximizing the probability of including the optimum
Jenna C. Fromer
Runzhong Wang
Mrunali Manjrekar
Austin Tripp
José Miguel Hernández-Lobato
Connor W. Coley
47
0
0
08 Oct 2024
Skew-symmetric approximations of posterior distributions
Francesco Pozza
Daniele Durante
Botond Szabó
39
2
0
21 Sep 2024
Computationally Efficient Estimation of Large Probit Models
Patrick Ding
Guido Imbens
Zhaonan Qu
Yinyu Ye
29
0
0
12 Jul 2024
Scalable expectation propagation for generalized linear models
Niccolò Anceschi
A. Fasano
Beatrice Franzolini
Giovanni Rebaudo
35
0
0
02 Jul 2024
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
29
2
0
06 Jun 2024
Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective
Khiem H. Le
Nhan Luong-Ha
Manh Nguyen-Duc
Danh Le-Phuoc
Cuong D. Do
Kok-Seng Wong
FedML
29
1
0
30 May 2024
Robust Entropy Search for Safe Efficient Bayesian Optimization
D. Weichert
Alexander Kister
Sebastian Houben
Patrick Link
G. Ernis
AAML
57
0
0
29 May 2024
Variational Bayes for Federated Continual Learning
Dezhong Yao
Sanmu Li
Yutong Dai
Zhiqiang Xu
Shengshan Hu
Peilin Zhao
Lichao Sun
FedML
56
1
0
23 May 2024
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
26
0
0
29 Apr 2024
Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
Roumen Nikolaev Popov
24
0
0
16 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
54
5
0
08 Apr 2024
Circular Belief Propagation for Approximate Probabilistic Inference
Vincent Bouttier
R. Jardri
S. Denéve
25
0
0
17 Mar 2024
Stacking Factorizing Partitioned Expressions in Hybrid Bayesian Network Models
Peng Lin
M. Neil
Norman E. Fenton
20
0
0
23 Feb 2024
Safe Active Learning for Time-Series Modeling with Gaussian Processes
Christoph Zimmer
Mona Meister
D. Nguyen-Tuong
AI4TS
27
52
0
09 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
32
4
0
06 Feb 2024
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
26
0
0
06 Dec 2023
Constrained Bayesian Optimization Under Partial Observations: Balanced Improvements and Provable Convergence
Shengbo Wang
Ke Li
18
11
0
06 Dec 2023
Entropy and the Kullback-Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation
Marco Scutari
16
2
0
29 Nov 2023
Multi-Objective Bayesian Optimization with Active Preference Learning
Ryota Ozaki
Kazuki Ishikawa
Youhei Kanzaki
Shinya Suzuki
Shion Takeno
Ichiro Takeuchi
Masayuki Karasuyama
25
7
0
22 Nov 2023
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Shikai Fang
Xin Yu
Zheng Wang
Shibo Li
R. Kirby
Shandian Zhe
24
1
0
08 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
M. Girolami
Arto Klami
32
3
0
05 Nov 2023
Variational Inference for Sparse Poisson Regression
Mitra Kharabati
Morteza Amini
32
1
0
02 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
Streaming Factor Trajectory Learning for Temporal Tensor Decomposition
Shikai Fang
Xin Yu
Shibo Li
Zheng Wang
R. Kirby
Shandian Zhe
AI4TS
27
3
0
25 Oct 2023
PRIOR: Personalized Prior for Reactivating the Information Overlooked in Federated Learning
Mingjia Shi
Yuhao Zhou
Kai Wang
Huaizheng Zhang
Shudong Huang
Qing Ye
Jiangcheng Lv
26
9
0
13 Oct 2023
LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection
Feiyi Chen
Zhen Qin
Yingying Zhang
Shuiguang Deng
Lunting Fan
Guansong Pang
Qingsong Wen
AI4TS
14
6
0
09 Oct 2023
Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
Da Long
Wei W. Xing
Aditi S. Krishnapriyan
R. Kirby
Shandian Zhe
Michael W. Mahoney
18
0
0
09 Oct 2023
Inferring Inference
Rajkumar Vasudeva Raju
Zhe Li
Scott W. Linderman
Xaq Pitkow
22
1
0
04 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
40
0
04 Oct 2023
An Easy Rejection Sampling Baseline via Gradient Refined Proposals
Edward Raff
Mark McLean
James Holt
15
0
0
30 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
31
26
0
20 Sep 2023
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
Sutanu Gayen
Kuldeep S. Meel
Dimitrios Myrisiotis
A. Pavan
N. V. Vinodchandran
13
4
0
17 Sep 2023
Amortised Inference in Bayesian Neural Networks
Tommy Rochussen
UQCV
BDL
28
0
0
06 Sep 2023
Expectation propagation for the smoothing distribution in dynamic probit
Niccolò Anceschi
A. Fasano
Giovanni Rebaudo
27
0
0
04 Sep 2023
BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition
Shikai Fang
Qingsong Wen
Yingtao Luo
Shandian Zhe
Liang Sun
AI4TS
27
5
0
28 Aug 2023
A State-Space Perspective on Modelling and Inference for Online Skill Rating
Samuel Duffield
Samuel Power
Lorenzo Rimella
18
6
0
04 Aug 2023
Variational Inference with Gaussian Score Matching
Chirag Modi
C. Margossian
Yuling Yao
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
16
12
0
15 Jul 2023
Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual Prostheses
Jacob Granley
T. Fauvel
M. Chalk
M. Beyeler
13
9
0
16 Jun 2023
Realising Synthetic Active Inference Agents, Part I: Epistemic Objectives and Graphical Specification Language
Magnus T. Koudahl
T. V. D. Laar
Bert De Vries
24
1
0
13 Jun 2023
Automating Model Comparison in Factor Graphs
Bart Van Erp
Wouter W. L. Nuijten
T. V. D. Laar
Bert De Vries
16
1
0
09 Jun 2023
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
20
3
0
07 Jun 2023
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
22
5
0
03 Jun 2023
On the Convergence of Coordinate Ascent Variational Inference
A. Bhattacharya
D. Pati
Yun Yang
17
10
0
01 Jun 2023
1
2
3
4
...
8
9
10
Next