ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.00224
26
7

Variational Inference for Logical Inference

1 September 2017
Guy Edward Toh Emerson
Ann A. Copestake
    NAI
ArXivPDFHTML
Abstract

Functional Distributional Semantics is a framework that aims to learn, from text, semantic representations which can be interpreted in terms of truth. Here we make two contributions to this framework. The first is to show how a type of logical inference can be performed by evaluating conditional probabilities. The second is to make these calculations tractable by means of a variational approximation. This approximation also enables faster convergence during training, allowing us to close the gap with state-of-the-art vector space models when evaluating on semantic similarity. We demonstrate promising performance on two tasks.

View on arXiv
Comments on this paper