ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.2944
  4. Cited By
Practical Bayesian Optimization of Machine Learning Algorithms

Practical Bayesian Optimization of Machine Learning Algorithms

13 June 2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
ArXivPDFHTML

Papers citing "Practical Bayesian Optimization of Machine Learning Algorithms"

50 / 2,248 papers shown
Title
Training Deep Neural Networks by optimizing over nonlocal paths in
  hyperparameter space
Training Deep Neural Networks by optimizing over nonlocal paths in hyperparameter space
Vlad Pushkarov
Jonathan Efroni
M. Maksymenko
M. Koch-Janusz
11
1
0
09 Sep 2019
Lecture Notes: Optimization for Machine Learning
Lecture Notes: Optimization for Machine Learning
Elad Hazan
13
10
0
08 Sep 2019
Devign: Effective Vulnerability Identification by Learning Comprehensive
  Program Semantics via Graph Neural Networks
Devign: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks
Yaqin Zhou
Shangqing Liu
J. Siow
Xiaoning Du
Yang Liu
GNN
13
749
0
08 Sep 2019
A scalable constructive algorithm for the optimization of neural network
  architectures
A scalable constructive algorithm for the optimization of neural network architectures
Massimiliano Lupo Pasini
Junqi Yin
Ying Wai Li
M. Eisenbach
9
5
0
07 Sep 2019
Transferable Neural Processes for Hyperparameter Optimization
Transferable Neural Processes for Hyperparameter Optimization
Ying Wei
P. Zhao
Huaxiu Yao
Junzhou Huang
BDL
28
8
0
07 Sep 2019
Efficient Automatic Meta Optimization Search for Few-Shot Learning
Efficient Automatic Meta Optimization Search for Few-Shot Learning
Xinyue Zheng
Peng Wang
Qigang Wang
Zhongchao Shi
Feiyu Xu
19
0
0
06 Sep 2019
Understanding ML driven HPC: Applications and Infrastructure
Understanding ML driven HPC: Applications and Infrastructure
Geoffrey C. Fox
S. Jha
22
13
0
05 Sep 2019
Recurrent Neural Networks for Time Series Forecasting: Current Status
  and Future Directions
Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions
Hansika Hewamalage
Christoph Bergmeir
Kasun Bandara
AI4TS
35
873
0
02 Sep 2019
Scalable Reinforcement-Learning-Based Neural Architecture Search for
  Cancer Deep Learning Research
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research
Prasanna Balaprakash
Romain Egele
Misha Salim
Stefan M. Wild
V. Vishwanath
Fangfang Xia
Thomas Brettin
Rick L. Stevens
33
53
0
01 Sep 2019
Surrogate Optimization of Deep Neural Networks for Groundwater
  Predictions
Surrogate Optimization of Deep Neural Networks for Groundwater Predictions
Juliane Müller
Jangho Park
R. Sahu
C. Varadharajan
B. Arora
B. Faybishenko
D. Agarwal
AI4CE
33
72
0
28 Aug 2019
Multi-Objective Automatic Machine Learning with AutoxgboostMC
Multi-Objective Automatic Machine Learning with AutoxgboostMC
Florian Pfisterer
Stefan Coors
Janek Thomas
B. Bischl
33
16
0
28 Aug 2019
A Framework for Model Search Across Multiple Machine Learning
  Implementations
A Framework for Model Search Across Multiple Machine Learning Implementations
Yoshiki Takahashi
M. Asahara
Kazuyuki Shudo
28
3
0
27 Aug 2019
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with
  Meta-Learning
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
Zhijun Mai
Guosheng Hu
Dexiong Chen
Fumin Shen
Heng Tao Shen
22
41
0
27 Aug 2019
Fusing heterogeneous data sets
Fusing heterogeneous data sets
Yipeng Song
14
0
0
23 Aug 2019
A tree-based radial basis function method for noisy parallel surrogate
  optimization
A tree-based radial basis function method for noisy parallel surrogate optimization
Chenchao Shou
Matthew West
22
2
0
21 Aug 2019
Towards Assessing the Impact of Bayesian Optimization's Own
  Hyperparameters
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
28
18
0
19 Aug 2019
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis
  of Hyperparameters
BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Joshua Marben
Philip Muller
Frank Hutter
13
40
0
16 Aug 2019
Multitask and Transfer Learning for Autotuning Exascale Applications
Multitask and Transfer Learning for Autotuning Exascale Applications
Wissam M. Sid-Lakhdar
M. Aznaveh
Xin Li
J. Demmel
34
11
0
15 Aug 2019
Optimizing Ensemble Weights and Hyperparameters of Machine Learning
  Models for Regression Problems
Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems
Mohsen Shahhosseini
Guiping Hu
Hieu H. Pham
34
139
0
14 Aug 2019
ACNet: Strengthening the Kernel Skeletons for Powerful CNN via
  Asymmetric Convolution Blocks
ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
Xiaohan Ding
Yuchen Guo
Guiguang Ding
Jiawei Han
31
662
0
11 Aug 2019
BISTRO: Berkeley Integrated System for Transportation Optimization
BISTRO: Berkeley Integrated System for Transportation Optimization
Sidney A. Feygin
Jessica R. Lazarus
E. Forscher
Valentine Golfier-Vetterli
Jonathan W. Lee
Abhishek Gupta
Rashid A. Waraich
C. Sheppard
Alexandre M. Bayen
27
8
0
10 Aug 2019
DeepAISE -- An End-to-End Development and Deployment of a Recurrent
  Neural Survival Model for Early Prediction of Sepsis
DeepAISE -- An End-to-End Development and Deployment of a Recurrent Neural Survival Model for Early Prediction of Sepsis
S. Shashikumar
C. Josef
Ashish Sharma
S. Nemati
8
10
0
10 Aug 2019
Automatic Calibration of Dynamic and Heterogeneous Parameters in
  Agent-based Model
Automatic Calibration of Dynamic and Heterogeneous Parameters in Agent-based Model
Dongjun Kim
Tae-Sub Yun
Il-Chul Moon
11
3
0
09 Aug 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
42
122
0
05 Aug 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
50
1,423
0
02 Aug 2019
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
27
139
0
01 Aug 2019
No-PASt-BO: Normalized Portfolio Allocation Strategy for Bayesian
  Optimization
No-PASt-BO: Normalized Portfolio Allocation Strategy for Bayesian Optimization
Thiago de P. Vasconcelos
Daniel Augusto R. M. A. de Souza
C. L. C. Mattos
Joao P. P. Gomes
17
11
0
01 Aug 2019
Deep Neural Network Hyperparameter Optimization with Orthogonal Array
  Tuning
Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning
Xiang Zhang
Xiaocong Chen
Lina Yao
Chang Ge
Manqing Dong
OOD
11
79
0
31 Jul 2019
Ablate, Variate, and Contemplate: Visual Analytics for Discovering
  Neural Architectures
Ablate, Variate, and Contemplate: Visual Analytics for Discovering Neural Architectures
Dylan Cashman
Adam Perer
Remco Chang
Hendrik Strobelt
KELM
14
29
0
30 Jul 2019
pySOT and POAP: An event-driven asynchronous framework for surrogate
  optimization
pySOT and POAP: An event-driven asynchronous framework for surrogate optimization
David Eriksson
D. Bindel
C. Shoemaker
27
56
0
30 Jul 2019
On the Design of Black-box Adversarial Examples by Leveraging
  Gradient-free Optimization and Operator Splitting Method
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
32
54
0
26 Jul 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
49
5,584
0
25 Jul 2019
BEHRT: Transformer for Electronic Health Records
BEHRT: Transformer for Electronic Health Records
Yikuan Li
Shishir Rao
J. R. A. Solares
A. Hassaine
D. Canoy
Yajie Zhu
K. Rahimi
G. Salimi-Khorshidi
OOD
45
446
0
22 Jul 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
27
44
0
21 Jul 2019
Techniques for Automated Machine Learning
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
18
48
0
21 Jul 2019
Prediction of neural network performance by phenotypic modeling
Prediction of neural network performance by phenotypic modeling
Alexander Hagg
Martin Zaefferer
Jörg Stork
Adam Gaier
15
8
0
16 Jul 2019
Meta-Learning for Black-box Optimization
Meta-Learning for Black-box Optimization
T. Vishnu
Pankaj Malhotra
Jyoti Narwariya
L. Vig
Gautam M. Shroff
18
18
0
16 Jul 2019
Informative Path Planning with Local Penalization for Decentralized and
  Asynchronous Swarm Robotic Search
Informative Path Planning with Local Penalization for Decentralized and Asynchronous Swarm Robotic Search
P. Ghassemi
Souma Chowdhury
11
7
0
09 Jul 2019
Neural Network Architecture Search with Differentiable Cartesian Genetic
  Programming for Regression
Neural Network Architecture Search with Differentiable Cartesian Genetic Programming for Regression
Marcus Märtens
Dario Izzo
18
9
0
03 Jul 2019
HyperNOMAD: Hyperparameter optimization of deep neural networks using
  mesh adaptive direct search
HyperNOMAD: Hyperparameter optimization of deep neural networks using mesh adaptive direct search
Dounia Lakhmiri
Sébastien Le Digabel
C. Tribes
3DH
31
23
0
03 Jul 2019
Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian
  Process Regression Approaches
Adaptive Pricing in Insurance: Generalized Linear Models and Gaussian Process Regression Approaches
Yuqing Zhang
N. Walton
21
3
0
02 Jul 2019
Augmenting and Tuning Knowledge Graph Embeddings
Augmenting and Tuning Knowledge Graph Embeddings
Robert Bamler
Farnood Salehi
Stephan Mandt
21
7
0
01 Jul 2019
Two-stage Optimization for Machine Learning Workflow
Two-stage Optimization for Machine Learning Workflow
Alexandre Quemy
TPM
32
26
0
01 Jul 2019
Learning Effective Loss Functions Efficiently
Learning Effective Loss Functions Efficiently
Matthew J. Streeter
22
8
0
28 Jun 2019
MLFriend: Interactive Prediction Task Recommendation for Event-Driven
  Time-Series Data
MLFriend: Interactive Prediction Task Recommendation for Event-Driven Time-Series Data
Lei Xu
Shubhra (Santu) Karmaker
K. Veeramachaneni
AI4TS
16
4
0
28 Jun 2019
Mise en abyme with artificial intelligence: how to predict the accuracy
  of NN, applied to hyper-parameter tuning
Mise en abyme with artificial intelligence: how to predict the accuracy of NN, applied to hyper-parameter tuning
Giorgia Franchini
Mathilde Galinier
M. Verucchi
25
2
0
28 Jun 2019
Safe Contextual Bayesian Optimization for Sustainable Room Temperature
  PID Control Tuning
Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning
Marcello Fiducioso
Sebastian Curi
B. Schumacher
M. Gwerder
Andreas Krause
AI4CE
11
72
0
28 Jun 2019
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
H. Jomaa
Josif Grabocka
Lars Schmidt-Thieme
25
65
0
27 Jun 2019
Modulating Surrogates for Bayesian Optimization
Modulating Surrogates for Bayesian Optimization
Erik Bodin
Markus Kaiser
Ieva Kazlauskaite
Zhenwen Dai
Neill D. F. Campbell
Carl Henrik Ek
20
2
0
26 Jun 2019
Reasoning about Hypothetical Agent Behaviours and their Parameters
Reasoning about Hypothetical Agent Behaviours and their Parameters
Stefano V. Albrecht
Peter Stone
10
62
0
26 Jun 2019
Previous
123...303132...434445
Next