ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06674
15
18

Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters

19 August 2019
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
ArXivPDFHTML
Abstract

Bayesian Optimization (BO) is a common approach for hyperparameter optimization (HPO) in automated machine learning. Although it is well-accepted that HPO is crucial to obtain well-performing machine learning models, tuning BO's own hyperparameters is often neglected. In this paper, we empirically study the impact of optimizing BO's own hyperparameters and the transferability of the found settings using a wide range of benchmarks, including artificial functions, HPO and HPO combined with neural architecture search. In particular, we show (i) that tuning can improve the any-time performance of different BO approaches, that optimized BO settings also perform well (ii) on similar problems and (iii) partially even on problems from other problem families, and (iv) which BO hyperparameters are most important.

View on arXiv
Comments on this paper